

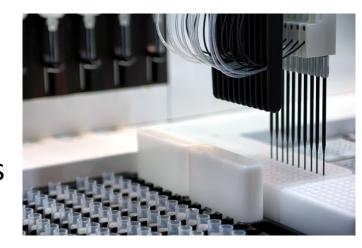
Transcriptomics-Based Points of Departure for Fish

Use of In Silico Sub-Sampling to Inform High Throughput Assay Design

Monique Hazemi¹, Kevin Flynn², Kelsey Vitense³, Michelle Le¹, Kendra Bush¹, Dan Villeneuve²

¹Oak Ridge Institute for Science and Education at USEPA GLTED, ²U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN, ³Spec-Pro Professional Services at USEPA GLTED.

Summary: A minimum of 10,000 transcript features and 5 biological replicates in fathead minnow high throughput assays are needed to generate reliable transcriptomic-based points of departure for regulatory hazard characterization. Quantifying additional criteria is anticipated, pending more chemical data



Background

Traditional animal toxicity testing is time and resource intensive

- High-throughput transcriptomics as an alternative
 - Uses gene expression profiling as an endpoint for rapidly assessing the effects of chemicals
 - Can provide potency estimates for the concentrations of chemicals that produce perturbations

Objective

 Identify high-throughput transcriptomic assay parameters that can produce reliable points of departure estimates while minimizing time and resource use

Florence Pagé-Larivière, Doug Crump, Jason M. O'Brien 🖰 🖾

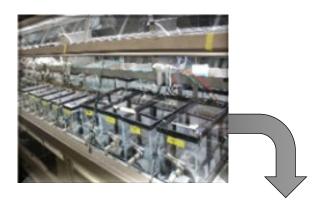
Temporal Concordance Between Apical and Transcriptional Points of Departure for Chemical Risk Assessment 🕮

Russell S. Thomas ™, Scott C. Wesselkamper, Nina Ching Y. Wang, Q. Jay Zhao, Dan D. Petersen, Jason C. Lambert, Ila Cote, Longlong Yang, Eric Healy, Michael B. Black, Harvey J. Clewell, III, Bruce C. Allen, Melvin E. Andersen

Toxicological Sciences, Volume 134, Issue 1, July 2013, Pages 180–194, https://doi.org/10.1093/toxsci/kft094

Mutation Research/Genetic Toxicology and Environmental Mutagenesis

Integrating pathway-based transcriptomic data into quantitative chemical risk assessment: A five chemical case study


Russell S. Thomas ^a A M, Harvey J. Clewell III ^a, Bruce C. Allen ^b, Longlong Yang ^a, Eric Healy ^a, Melvin E. Andersen

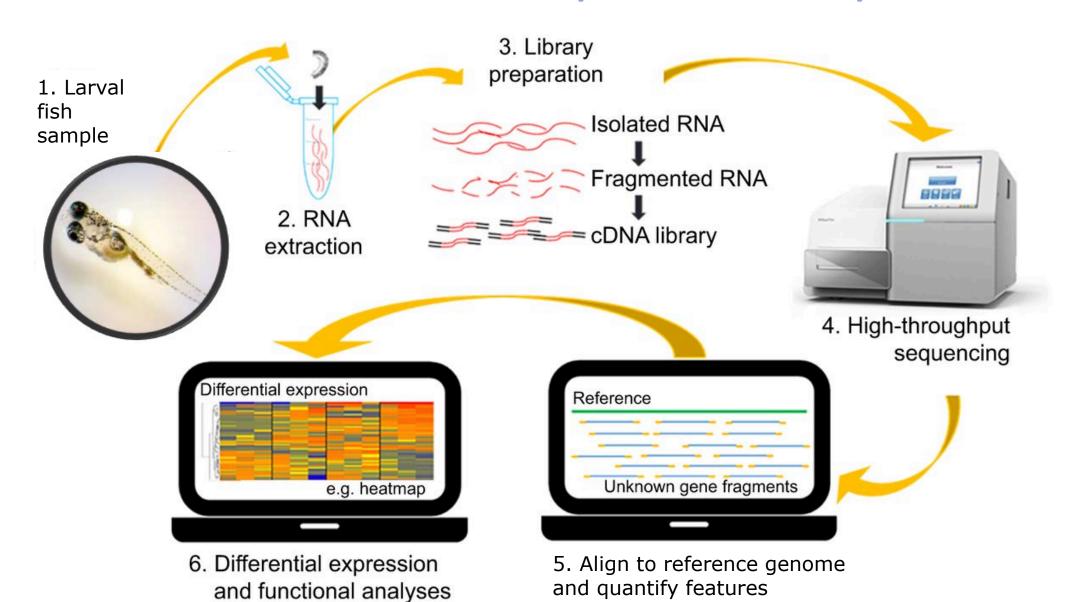
Methods – Assay Design

Species	Age at Start	Temp	Time to Load Plate	Control 24-hr Survival	RNA Qty per Well
Pimephales promelas	24-hour	25° C	~30 minutes	24-hour	~1500 ng

Exposure Design

- 1 ml deep 96-well plates
- 12 concentrations 8 replicates per concentration
- Half-log dilution series
- 1 individual per well
- 24-hour static exposures
- Phenotypic endpoints assessed
 - Survival and behavior
- After homogenization, RNA extracted for transcriptomics

Chemicals


Metals	Neonicotinoids	Pharmaceuticals
CuSO4	Clothianidin	Fluoxetine
NiSO4	Flupyradifurone*	Paroxetine
ZnSO4	Imidacloprid	Sertraline
	Thiacloprid	

^{*}Belongs to butenolide class of insecticides, but has similar mode of action to neonicotinoid insecticides

Methods – Transcriptomic Analysis

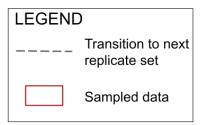
Methods – *In silico* Subsampling

Sample ID

Transcript	ID

	4	Α	В	С	D	E	F	G	н
	1		Cu_P1_A1	Cu_P1_A10	Cu_P1_A2	Cu_P1_A3	Cu_P1_A4	Cu_P1_A5	Cu_P1_A6 (
	2	Dose	0	0.2	0.00002	0.00006	0.0002	0.0006	0.002
	3	FMt000003	6.396698281	7.165080955	6.139417185	5.625463693	5.936491943	5.984797836	6.526667329
	4	FMt000004	2.727597133	2.819530386	2.476866196	2.260722943	2.072535549	2.408035192	2.829599109
	5	FMt000005	2.666574282	2.757823089	2.957500498	3.294229757	3.698358555	3.209724111	2.681578019
	6	FMt000006	4.675333003	4.768559009	4.858302489	5.139450164	4.551132645	4.819989912	4.829061001
+	-	FMt000008	5.816765605	5.550398239	5.373006159	5.467031575	5.756057101	5.692205772	5.572099115
	8	FMt000009	1.921778265	1.337509659	1.842399017	1.364723466	1.820179855	2.227968209	1.720804988
	9	FMt000010	0.400578876	1.02468777	0.580341068	1.428654949	1.048759955	1.133331622	0.796197253
	10	FMt000011	1.036715489	1.337509659	1.179840942	1.762168511	2.033423943	1.907113212	1.682372652
	11	FMt000013	4.339705191	4.231422779	4.457041355	4.158758634	4.390170142	4.287434091	4.354221981
	12	FMt000014	0.753428738	1.497088068	1.179840942	1.227677204	0.694880669	1.737858491	1.117537912
	13	FMt000016	4.685621982	4.677065189	4.791080697	4.988545119	4.631905782	4.902412506	5.063939077
	14	FMt000017	1.15990699	1.392687117	1.548825352	2.575114318	1.623516583	2.058579857	2.227306515
	15	FMt000019	2.982521854	1.092914161	1.969452091	3.276966231	2.985273802	2.37954184	2.472248844
	16	FMt000020	4.326615646	3.729709358	4.659064377	3.978274305	3.280771887	3.922966112	3.700540563
		Mt000022	0.753428738	0.427434191	0.350624657	0.608894253	0.224966545	0.332838013	0.997448031
	18	FMt000026	2.536192677	2.859249401	3.166436765	3.031435449	2.856737829	2.90442897	2.963836436
	19	FMt000031	1.886534004	2.036875017	2.086216064	2.709867426	2.474112535	2.463387273	2.898278494
	20	FMt000032	4.210281411	3.872414951	4.088442997	3.934904526	3.907492756	4.116679066	3.631612409
	21	FMt000034	3.641040659	3.975408278	3.930816133	3.425369888	3.928963604	4.116679066	4.285372312
				200831699	4.413005717	4.267645049	4.435879765	4.332726221	4.354221981
P			2000	025579454	3.364405188	3.409614619	2.5591869	2.982290068	3.505201762
ı		1000	0000	220389325	0.470050181	0.081807702	0.59096166	0.072994421	0.796197253
ı									

Dose used in that sample



10th percentile(BMD) = tPOD

Methods – *In silico* Subsampling

Fluoxetine	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	B01	B02	B03	B04	B06	B07	808	B09	B10	B11
Dose	0	1.5E-05	0.00005	0.00015	0.0005	0.0015	0.005	0.015	0.05	0.15	0.5	0	1.5E-05	0.00005	0.00015	0.0015	0.005	0.015	0.05	0.15	0.5
	5.69	5.66	5.67	5.98	5.63	5.88	5.46	5.56	5.43	5.69	5.49	6.01	6.01	5.69	5.48	5.53	5.54	5.15	5.61	5.48	5.45
	1.85	1.93	1.97	2.01	2.10	1.33	2.12	1.83	1.47	1.71	2.03	2.23	2.13	1.58	1.37	2.15	1.81	2.09	1.51	1.05	1.50
	2.78	2.22	2.22	2.36	2.91	3.21	1.92	2.48	2.28	3.24	2.83	3.20	2.30	2.62	1.93	2.62	2.34	3.16	2.90	2.16	2.79
	4.63	4.45	4.49	4.45	4.16	4.39	4.88	4.21	4.25	4.35	4.52	3.90	4.06	4.20	4.53	4.09	4.24	4.10	4.12	4.01	4.38
	5.21	5.40	5.41	5.15	5.49	5.48	5.37	5.43	5.49	5.37	5.28	5.41	5.38	5.40	5.43	5.40	5.44	5.62	5.61	5.38	5.27
	1.72	1.49	1.63	1.65	1.96	1.54	1.30	1.69	1.21	1,32	1.07	1.91	1.44	1.67	1.87	1.75	2.10	1.72	1.58	1.35	1.36
	1.14	1.23	1.05	Ori	gına	и ех	(pre	SSIG	วท₁ผ	natr	X1.41	1.63	1.35	1.44	1.33	1.47	1.39	1.18	1.86	1.64	1.33
	1.75	1.67	1.54	1.50	1.89	1.72	2.30	1.95	1.73	1.66	1.56	2.11	2.26	1.94	2.02	1.78	1.91	2.12	1.58	1.78	1.46
	4.32	4.63	4.69	5.39	4.74	4.83	5.06	4.80	4.89	4.69	4.46	4.90	4.77	4.97	4.71	5.05	4.99	4.74	4.84	5.01	4.61
	0.97	1.04	1.49	1.65	1.02	1.33	1.18	1.07	1.16	1.37	1.51	1.40	0.74	0.84	1.37	0.70	1.29	1.33	0.98	1.00	1.29
	5.14	5.38	5.13	5.42	4.99	4.82	5.09	4.63	4.90	5.03	4.94	4.96	5.02	4.98	5.04	4.96	4.86	4.80	5.13	5.11	5.27
	2.51	2.57	2.56	2.61	2.65	2.16	2.40	1.73	2.08	2.26	2.31	2.44	2.10	2.49	2.31	1.98	2.18	2.09	2.44	2.39	2.61
	1.60	1.28	1.87	2.01	2.26	1.59	3.13	1.73	3.39	1.14	2.03	0.30	0.74	1.67	2.53	2.74	2.69	2.54	2.98	1.48	1.70
FMt000020	3.29	3.58	3.42	3.64	3.32	3.79	3.86	3.30	3.67	3.50	3.76	3.48	3.82	3.68	3.65	3.81	3.43	3.26	3.85	3.34	3.21

Full dataset:

- 31,158 transcripts
- 12 doses, 8 reps per dose
- 96 samples total

Transcript(m), m=100 - 30,000 at random intervals

"Transcript(100) example"

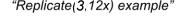
Fluoxetine	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	B01	B02	B03	B04
Dose	0	1.5E-05	0.00005	0.00015	0.0005	0.0015	0.005	0.015	0.05	0.15	0.5	0	1.5E-05	0.00005	0.00015
	5.69	5.66	5.67	5.98	5.63	5.88	5.46	5.56	5.43	5.69	5.49	6.01	6.01	5.69	5.48
FMt000004	1.85	1.93	1.97	2.01	2.10	1.33	2.12	1.83	1.47	1.71	2.03	2.23	2.13	1.58	1.37
FMt000005	2.78	2.22	2.22	2.36	2.91	3.21	1.92	2.48	2.28	3.24	2.83	3.20	2.30	2.62	1.93
FMt000006	4.63	4.45	4.49	4.45	4.16	4.39	4.88	4.21	4.25	4.35	4.52	3.90	4.06	4.20	4.53
FMt000008	5.21	5.40	5.41	5.15	5.49	5.48	5.37	5.43	5.49	5.37	5.28	5.41	5.38	5.40	5.43
FMt000009	1.72	1.49	1.63	1.65	1.96	1.54	1.30	1.69	1.21	1.32	1.07	1.91	1.44	1.67	1.87
FMt000010	1.14	1.23	1.05	0.53	1.59	1.39	0.51	1.22	1.42	1.57	1.41	1.63	1.35	1.44	1.33
FMt000011	1.75	1.67	1.54	1.50	1.89	1.72	2.30	1.95	1.73	1.66	1.56	2.11	2.26	1.94	2.02
FMt000013	4.32	4.63	4.69	5.39	4.74	4.83	5.06	4.80	4.89	4.69	4.46	4.90	4.77	4.97	4.71
FMt000014	0.97	1.04	1.49	1.65	1.02	1.33	1.18	1.07	1.16	1.37	1.51	1.40	0.74	0.84	1.37
	5.14	5.38	5.13	5.42	4.99	4.82	5.09	4.63	4.90	5.03	4.94	4.96	5.02	4.98	5.04
FMt000017	2.51	2.57	2.56	2.61	2.65	2.16	2.40	1.73	2.08	2.26	2.31	2.44	2.10	2.49	2.31
FMt000019	1.60	1.28	1.87	2.01	2.26	1.59	3.13	1.73	3.39	1.14	2.03	0.30	0.74	1.67	2.53
FMt000020	3.29	3.58	3.42	3.64	3.32	3.79	3.86	3.30	3.67	3.50	3.76	3.48	3.82	3.68	3.65

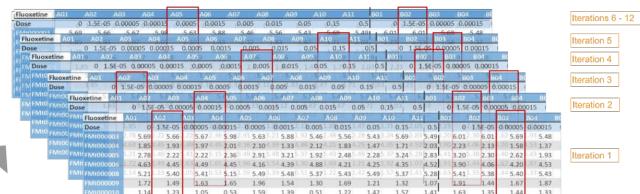
Transcript 100 dataset:

- 100 transcripts
- 12 doses, 8 reps per dose
- 96 samples total

Methods – *In silico* Subsampling

Replicate 3, 12x dataset: 31,158 transcripts


36 samples total


12 doses, **3 reps per dose**

12 iterations of each dataset

Replicate(n,12x), n=3 - 7

"Replicate(3,12x) example"

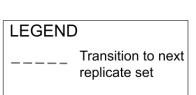
Sampled data

Fluoxetine	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	301	B02	B03	B04	B06	B07	B08	B09	B10	B11
Dose	0	1.5E-05	0.00005	0.00015	0.0005	0.0015	0.005	0.015	0.05	0.15	0.5	0	1.5E-05	0.00005	0.00015	0.0015	0.005	0.015	0.05	0.15	0.5
FMt000003	5.69	5.66	5.67	5.98	5.63	5.88	5.46	5.56	5.43	5.69	5.49	6.01	6.01	5.69	5.48	5.53	5.54	5.15	5.61	5.48	5.45
FMt000004	1.85	1.93	1.97	2.01	2.10	1.33	2.12	1.83	1.47	1.71	2.03	2.23	2.13	1.58	1.37	2.15	1.81	2.09	1.51	1.05	1.50
FMt000005	2.78	2.22	2.22	2.36	2.91	3.21	1.92	2.48	2.28	3.24	2.83	3.20	2.30	2.62	1.93	2.62	2.34	3.16	2.90	2.16	2.79
FMt000006	4.63	4.45	4.49	4.45	4.16	4.39	4.88	4.21	4.25	4.35	4.52	3.90	4.06	4.20	4.53	4.09	4.24	4.10	4.12	4.01	4.38
FMt000008	5.21	5.40	5.41	5.15	5.49	5.48	5.37	5.43	5.49	5.37	5.28	5.41	5.38	5.40	5.43	5.40	5.44	5.62	5.61	5.38	5.27
FMt000009	1.72	1.49	1.63	1.65	1.96	1.54	1.30	1.69	1.21	1,32	1.07	1.91	1.44	1.67	1.87	1.75	2.10	1.72	1.58	1.35	1.36
FMt000010	1.14	1.23	1.05	Orig	gına	ıı ex	pre	SSIC	on A	natr	X1.41	1.63	1.35	1.44	1.33	1.47	1.39	1.18	1.86	1.64	1.33
FMt000011	1.75	1.67	1.54	1.50	1.89	1.72	2.30	1.95	1.73	1.66	1.56	2.11	2.26	1.94	2.02	1.78	1.91	2.12	1.58	1.78	1.46
FMt000013	4.32	4.63	4.69	5.39	4.74	4.83	5.06	4.80	4.89	4.69	4.46	4.90	4.77	4.97	4.71	5.05	4.99	4.74	4.84	5.01	4.61
FMt000014	0.97	1.04	1.49	1.65	1.02	1.33	1.18	1.07	1.16	1.37	1.51	1.40	0.74	0.84	1.37	0.70	1.29	1.33	0.98	1.00	1.29
FMt000016	5.14	5.38	5.13	5.42	4.99	4.82	5.09	4.63	4.90	5.03	4.94	4.96	5.02	4.98	5.04	4.96	4.86	4.80	5.13	5.11	5.27
FMt000017	2.51	2.57	2.56	2.61	2.65	2.16	2.40	1.73	2.08	2.26	2.31	2.44	2.10	2.49	2.31	1.98	2.18	2.09	2.44	2.39	2.61
FMt000019	1.60	1.28	1.87	2.01	2.26	1.59	3.13	1.73	3.39	1.14	2.03	0.30	0.74	1.67	2.53	2.74	2.69	2.54	2.98	1.48	1.70
FMt000020	3.29	3.58	3.42	3.64	3.32	3.79	3.86	3.30	3.67	3.50	3.76	3.48	3.82	3.68	3.65	3.81	3.43	3.26	3.85	3.34	3.21

Full dataset:

- 31,158 transcripts
- 12 doses, 8 reps per dose
- 96 samples total

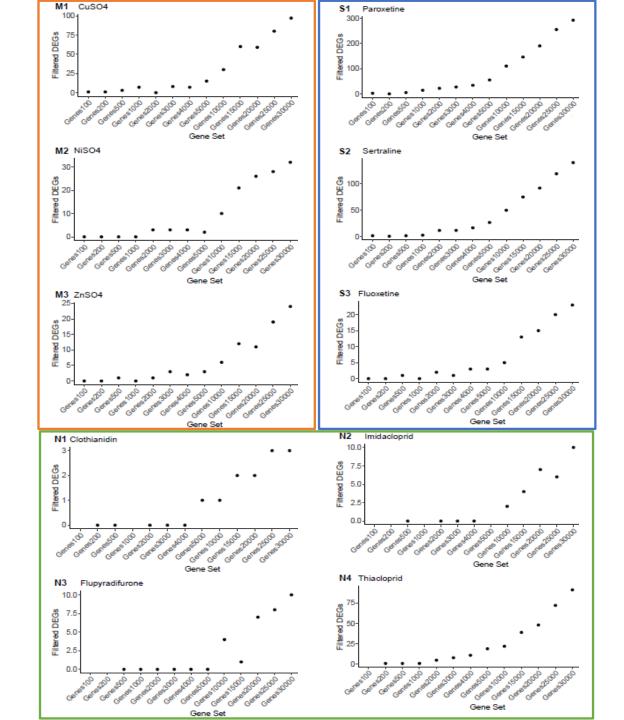
Transcript(m), m=100 - 30,000 at random intervals


"Transcript(100) example"

Fluoxetine	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	B01	B02	B03	B04
Dose	0	1.5E-05	0.00005	0.00015	0.0005	0.0015	0.005	0.015	0.05	0.15	0.5	0	1.5E-05	0.00005	0.00015
	5.69	5.66	5.67	5.98	5.63	5.88	5.46	5.56	5.43	5.69	5.49	6.01	6.01	5.69	5.48
FMt000004	1.85	1.93	1.97	2.01	2.10	1.33	2.12	1.83	1.47	1.71	2.03	2.23	2.13	1.58	1.37
	2.78	2.22	2.22	2.36	2.91	3.21	1.92	2.48	2.28	3.24	2.83	3.20	2.30	2.62	1.93
FMt000006	4.63	4.45	4.49	4.45	4.16	4.39	4.88	4.21	4.25	4.35	4.52	3.90	4.06	4.20	4.53
	5.21	5.40	5.41	5.15	5.49	5.48	5.37	5.43	5.49	5.37	5.28	5.41	5.38	5.40	5.43
	1.72	1.49	1.63	1.65	1.96	1.54	1.30	1.69	1.21	1.32	1.07	1.91	1.44	1.67	1.87
FMt000010	1.14	1.23	1.05	0.53	1.59	1.39	0.51	1.22	1.42	1.57	1.41	1.63	1.35	1.44	1.33
	1.75	1.67	1.54	1.50	1.89	1.72	2.30	1.95	1.73	1.66	1.56	2.11	2.26	1.94	2.02
FMt000013	4.32	4.63	4.69	5.39	4.74	4.83	5.06	4.80	4.89	4.69	4.46	4.90	4.77	4.97	4.71
	0.97	1.04	1.49	1.65	1.02	1.33	1.18	1.07	1.16	1.37	1.51	1.40	0.74	0.84	1.37
	5.14	5.38	5.13	5.42	4.99	4.82	5.09	4.63	4.90	5.03	4.94	4.96	5.02	4.98	5.04
	2.51	2.57	2.56	2.61	2.65	2.16	2.40	1.73	2.08	2.26	2.31	2.44	2.10	2.49	2.31
	1.60	1.28	1.87	2.01	2.26	1.59	3.13	1.73	3.39	1.14	2.03	0.30	0.74	1.67	2.53
	3.29	3.58	3.42	3.64	3.32	3.79	3.86	3.30	3.67	3.50	3.76	3.48	3.82	3.68	3.65

Transcript 100 dataset:

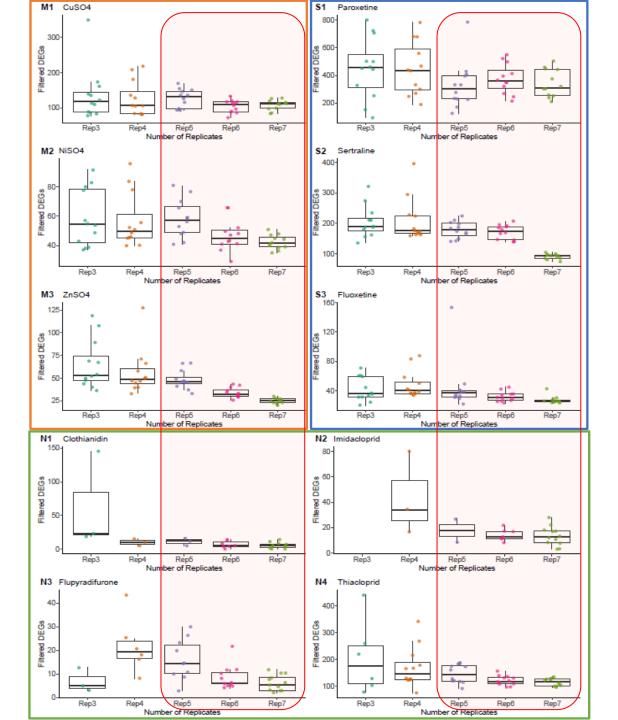
- 100 transcripts
- 12 doses, 8 reps per dose
- 96 samples total



Variable Transcript Set Sizes: DEGs

Metals

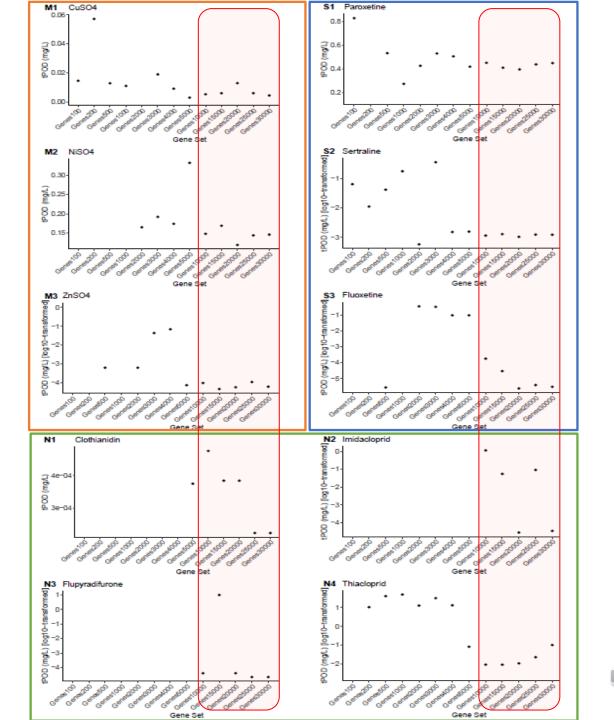
Pharms



Variable Replicate (12x) Sizes: DEGs

Metals

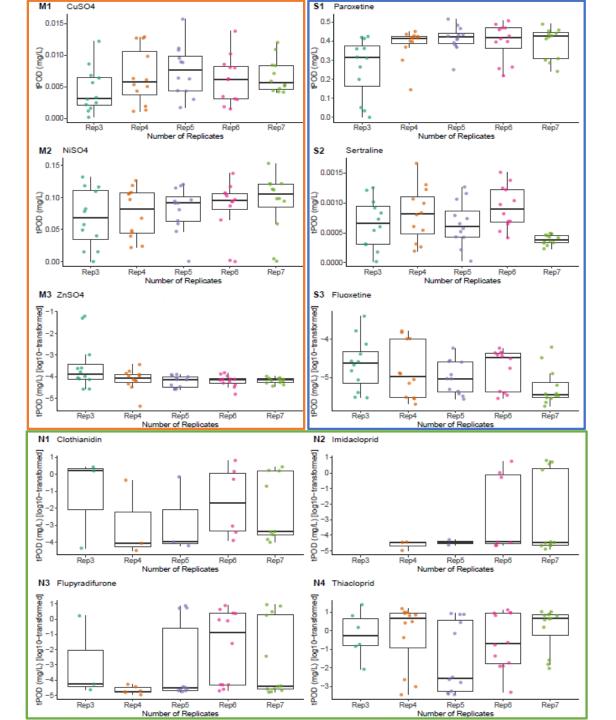
Pharms



Variable Transcript Set Sizes: tPOD

Metals

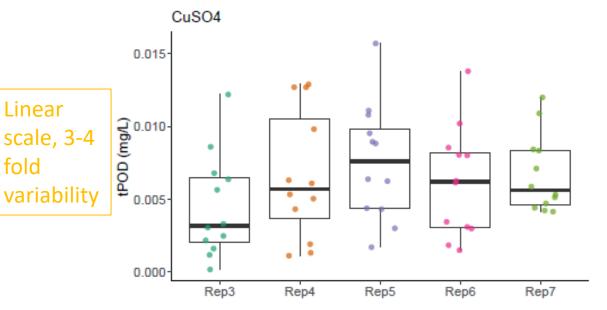
Pharms

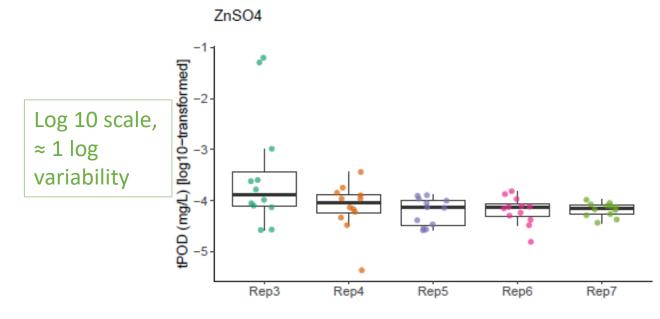


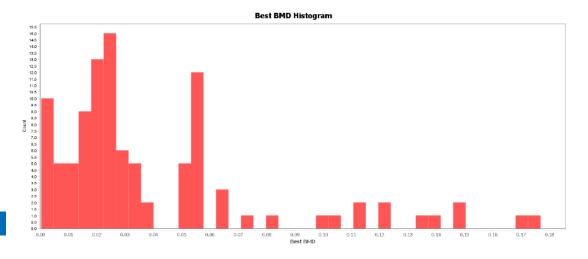
Variable Replicate (12x) Sizes: tPOD

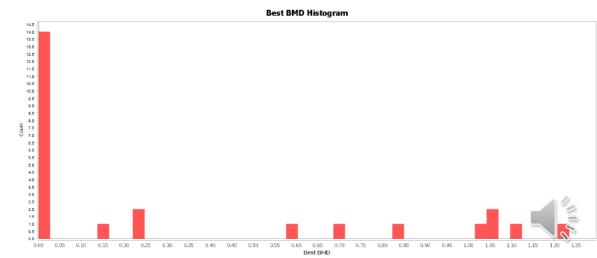
Metals

Pharms

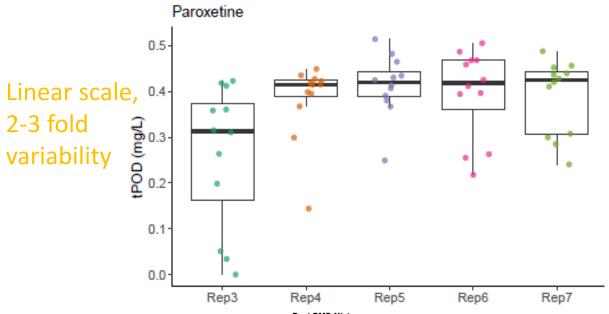


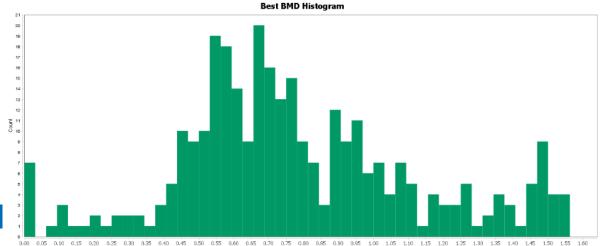



tPOD Variability

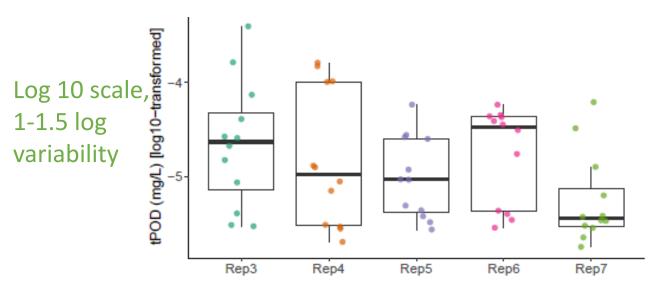

Copper sulfate (100-150 DEGs)

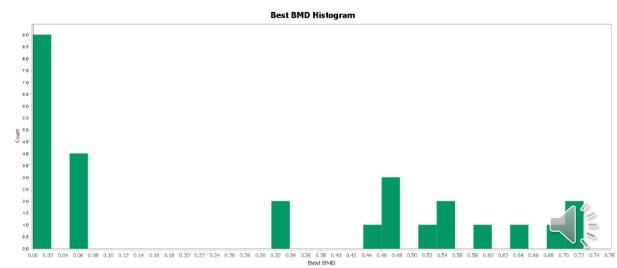
Zinc sulfate (20-60 DEGs)





tPOD Variability


Paroxetine (500-600 DEGs)



Fluoxetine (25-60 DEGs)

Conclusions

Minimum Assay Acceptance Criteria

- 10,000 transcript features
- 5 biological replicates
- Minimum number of differentially expressed genes [TBD]
- BMD distribution constraint [TBD]

tPODs that have reasonable, and quantifiable, levels of uncertainty is expected to aid the adoption of high-throughput transcriptomics in regulatory hazard characterization

Contributors

ORD CCTE GLTED-MIB: Adam Biales, David Bencic, Robert Flick, John Martinson

ORD CCTE GLTED-STB: Kevin Flynn, Dan Villeneuve, Kathy Jensen, Jenna Cavallin

ORISE FELLOWS: Michelle Le, Kelvin Santana-Rodriguez, Kendra Bush, Mackenzie Morshead,

John Hoang

SPEC-PRO PROFESSIONAL SERVICES: Kelsey Vitense

This research was supported in part by an appointment to the Research Participation Program at the Great Lakes Toxicology & Ecology Division, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.

The authors have no conflicts of interest to declare.

The research presented here neither constitutes nor necessarily reflects official U.S. EPA policy.

References

- Harrill, J., Shah, I., Setzer, R. W., Haggard, D., Auerbach, S., Judson, R., & Thomas, R. S. (2019). Considerations for strategic use of high-throughput transcriptomics chemical screening data in regulatory decisions. Current opinion in toxicology, 15, 64-75.
- Richard E. Connon, Ken M. Jeffries, Lisa M. Komoroske, Anne E. Todgham, Nann A. Fangue; The utility of transcriptomics in fish conservation. *J Exp Biol* 15 January 2018; 221 (2): jeb148833. doi: https://doi.org/10.1242/jeb.148833
- Phillips JR, Svoboda DL, Tandon A, et al. BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics. 2019;35(10):1780-1782. doi:10.1093/bioinformatics/bty878
- Pagé-Larivière, F., Crump, D., & O'Brien, J. M. (2019). Transcriptomic points-of-departure from short-term exposure studies are protective of chronic effects for fish exposed to estrogenic chemicals. Toxicology and applied pharmacology, 378, 114634.
- Thomas, R. S., Wesselkamper, S. C., Wang, N. C. Y., Zhao, Q. J., Petersen, D. D., Lambert, J. C., ... & Andersen, M. E. (2013). Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Toxicological sciences, 134(1), 180-194.
- Thomas, R. S., Clewell III, H. J., Allen, B. C., Yang, L., Healy, E., & Andersen, M. E. (2012). Integrating pathway-based transcriptomic data into quantitative chemical risk assessment: a five chemical case study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 746(2), 135-143.

