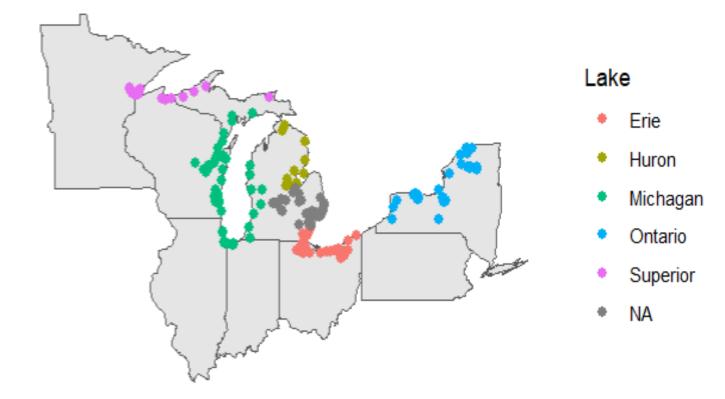


www.epa.gov

Background

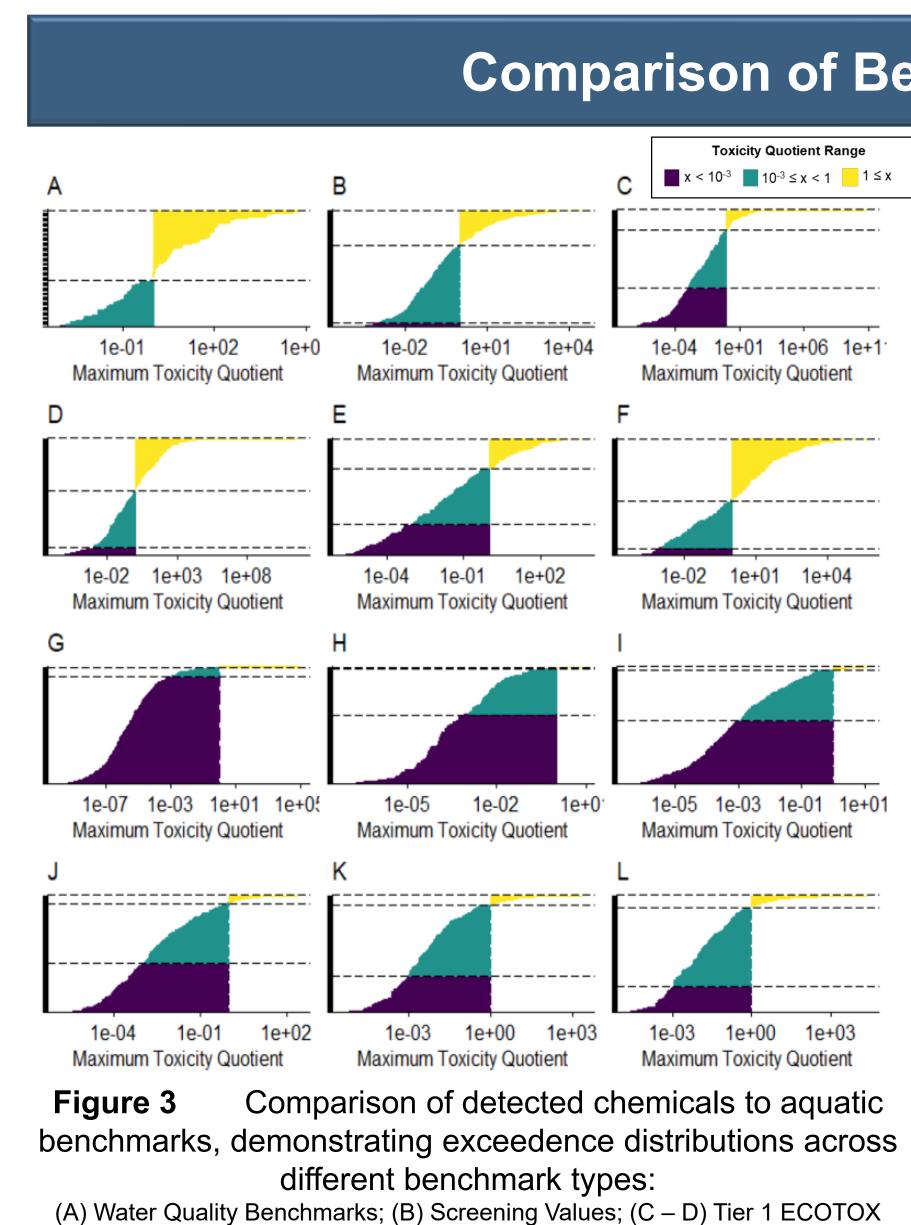

- Over the last decade, there have been substantial increases in the amount of publicly accessible ecotoxicological data and risk assessment tools.
- Practically, this is highly valuable to risk assessors and regulators who are often tasked with assessing the potential ecotoxicological risks of high numbers of chemicals detected in the aquatic environment.
- However, it can be difficult to determine how to effectively harness all this publicly accessible data and/or utilize these open-source tools for data-intensive risk assessments.
- Here, we demonstrate how aquatic benchmarks can be collated and/or developed using data from publicly accessible databases, and then used to prioritize chemicals detected in aquatic environments.
- Utilizing data generated from a 10-year monitoring effort across the Great Lakes Estuaries (2008 – 2018), we apply these benchmarks to prioritize legacy contaminants and chemicals of emerging concern.

Objectives:

- Collate and/or derive aquatic benchmarks for chemicals detected in the Great Lakes Estuaries, utilizing publicly accessible data and open-source databases.
- Compare and contrast benchmark analyses, identifying priority chemicals for management, monitoring, or assessment and general target areas for further ecotoxicological research.

Aquatic Monitoring Data

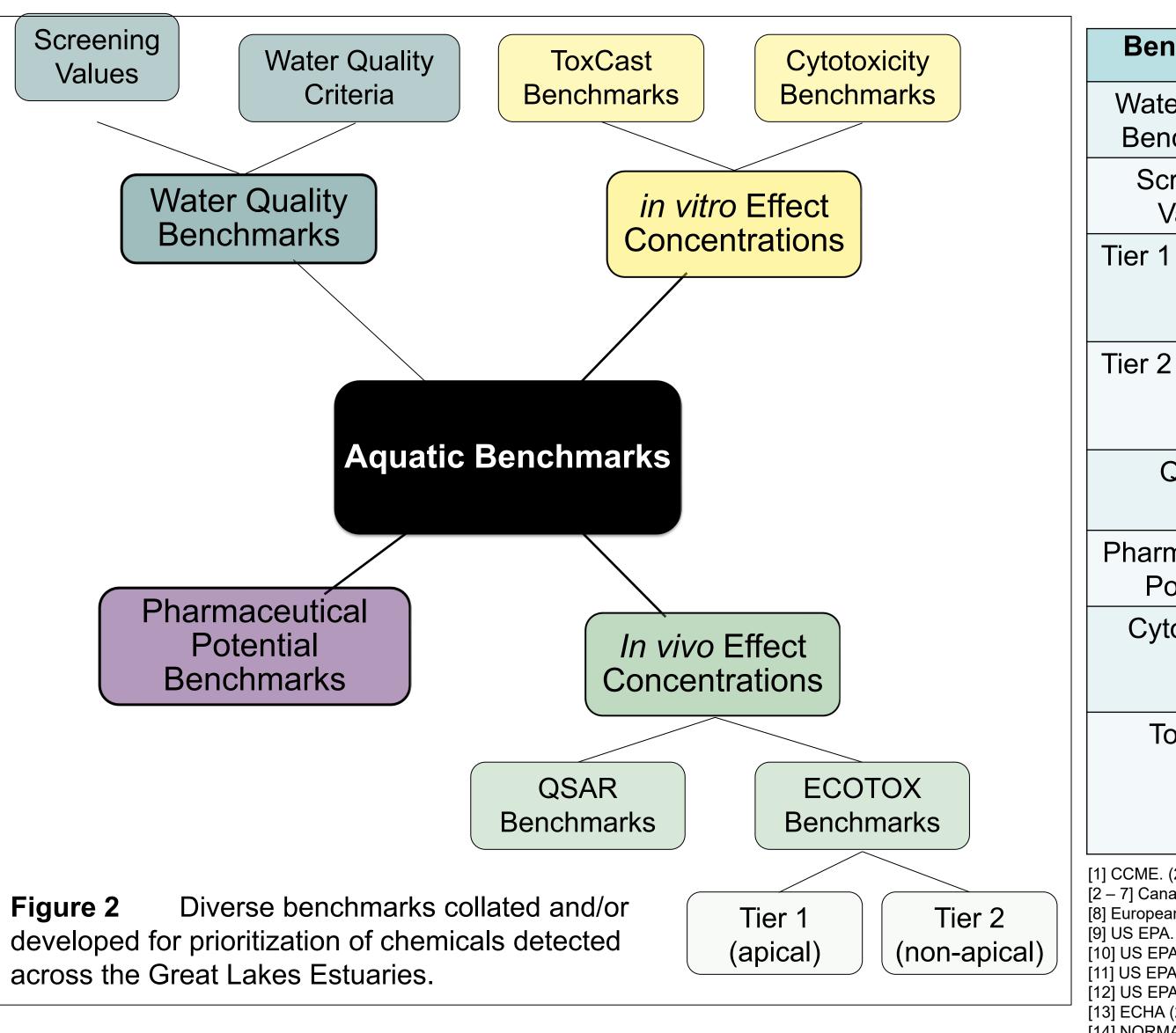
- Grab and/or composite samples were collected across the Great Lakes Estuaries from 2008 – 2018 (Figure 1).
- 67 552 chemicals were monitoring for at each site, including pharmaceuticals and personal care products, pesticides (active ingredients + degradates), PAHs/Fuels, industrial/mixed-use chemicals, and wastewater indicators (metabolites, sterols, hormones)
- Overall, **463 unique chemicals** were detected across the Great Lakes Estuaries over the 10-year sampling period.



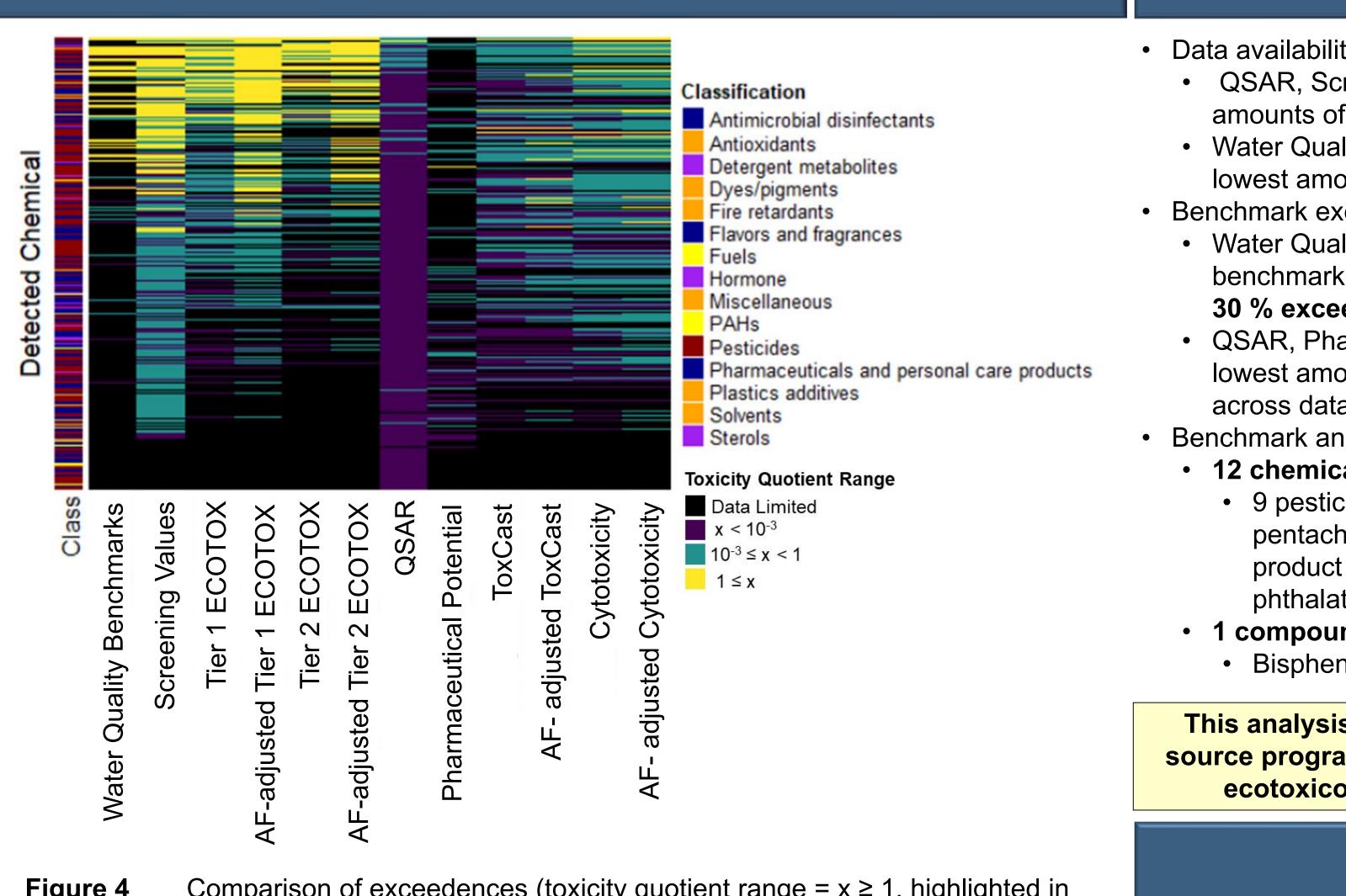
Sample sites across the Great Lakes Figure 1 Estuaries (2008 – 2018) used to collate data used for benchmark-based chemical prioritization.

Screening Values

Figure 2



(unadjusted + AF-adjusted); (E – F) Tier 2 ECOTOX (unadjusted + AF-adjusted); (G) QSAR; (H) Pharmacological Potential; (I – J) ToxCast (unadjusted + AF-adjusted); (K-L) Cytotox (unadjusted + AFadjusted).


U.S. Environmental Protection Agency Office of Research and Development

Tools and Techniques for Chemical Prioritization: Harnessing Publicly Accessible Ecotoxicological Data Maloney, E.M.^{1,2}, Frisch, J.³, Pronschinske, M^{.4}, Baldwin, A.K^{.5}, Corsi, S.R.⁴, Kimbrough, K.⁶, Edwards, M.⁶, Hummel, S.⁷, Vinas, N.⁸, and Villeneuve, D.L^{.2}

1 University of Minnesota-Duluth, Duluth MN, USA; 2 Great Lakes Toxicology and Ecology Division, US EPA, Duluth MN, USA; 3 General Dynamics Information Technology, US EPA, Duluth MN, USA; 4 US Geological Survey, Upper Midwest Water Science Center, Middleton WI, USA; 5 US Geological Survey, Idaho Water Science Center, Boise ID, USA; 6 National Centers for Coastal Ocean Science, NOAA National Ocean Service, Silverspring MD, USA; 7 US Fish and Wildlife Service, Ecological Services, Bloomington MN, USA; 8 US Army Engineer Research and Development Centre, Vicksburg MS, USA

Comparison of Benchmarks to Aquatic Monitoring Data

Comparison of exceedences (toxicity quotient range = $x \ge 1$, highlighted in Figure 4 yellow on heat map) and data availability (data limitations highlighted in black on heat map) across different benchmark types* collated to evaluate the ecotoxicological potential of chemicals detected in grab and/or composite samples collected from watersheds across the Great Lakes Estuaries (2008 – 2018).

Aquatic Benchmark Collation and Derivation

Table 1	1 Diverse benchmarks collated and/or developed for prioritization of chemicals detected across the Great Lakes Estuaries.		
nchmark	Description	Derivation	Source(s)
ter Quality nchmarks	Current (provisional or approved) water quality guidelines recommended by international, federal, state, tribal, or provincial regulatory agencies.	Minimum water quality benchmark available	[1 – 10]
creening Values	Historical water quality guidelines and screening values recommended by regulatory and/or government groups.	Minimum screening value available.	[11 – 18]
1 ECOTOX	Apical <i>in vivo</i> effect concentrations for aquatic vertebrates, aquatic invertebrates, and/or aquatic plants, both unadjusted (minimum effect value) and application-factor adjusted (accounting for study duration, data richness, and available endpoints).	Minimum <i>in vivo</i> effect concentration (unadjusted + adjusted with application factor)	[19]
2 ECOTOX	Non-apical <i>in vivo</i> effect concentrations for aquatic vertebrates, aquatic invertebrates, and/or aquatic plants, both unadjusted (minimum effect value) and application-factor adjusted (accounting for study duration, data richness, and available endpoints).		
QSAR	Acute toxicity estimates for aquatic vertebrates, invertebrates, and plants derived using quantitative structure-activity relationships and baseline toxicity equations.	Minimum value of all consensus estimates of acute toxicity.	[20 – 24]
rmaceutical Potential	Maximum (or peak) serum concentration that a drug achieves following dosing (C _{max}) for each pharmaceutical, indicating pharmaceutical potency.	Maximum available C _{max.}	[25]
vtotoxicity	Lower limit of cytotoxic burst concentration for each chemical, determined using results from <i>in vitro</i> bioassays carried out through the ToxCast testing efforts, both unadjusted and application-factor adjusted (accounting for data richness).	Lower limit of cytotoxic burst (unadjusted + application factor adjusted).	[26 – 28]
FoxCast	Activity concentration at cut-off (ACC) derived from <i>in vitro</i> assays carried out through the ToxCast testing effort, both unadjusted and application-factor adjusted (accounting for data richness and number of potentially perturbed pathways).	Minimum activity concentration at cut-off (ACC) (unadjusted + application factor adjusted).	[26 – 27]

[15] Buchman, MF. (2008). NOAA Screening Quick Reference Tables

[16] ECCC. (2016). Database of Environmental Quality Guidelines.

[19] US EPA (2018). ECOTOXicology Knowledgebase

[21] US EPA (2020). CompTox Dashboard.

doi: 10.1002/etc.3460.

1] CCME. (2018). Canadian Environmental Quality Guidelines [2 – 7] Canadian Provincial Water Quality Guidelines (various; 1994 - 2021).

[8] European Parliament and Council. (2008). Environmental Quality Standards. [17] US EPA (2003). Derivation of Equilibrium Partitioning Sediment Benchmarks. [9] US EPA. (2016). National Recommended Water Quality Criteria. [10] US EPA. (2021). State-Specific Water Quality Standards under the CWA. [11] US EPA. (1996). Ecotox Thresholds.

[12] US EPA (2017). Aquatic Life Benchmarks for Pesticide Registration.

[13] ECHA (2021). Registered substances under REACH. [14] NORMAN (2021). NORMAN Ecotoxicology Database – Lowest PNECs.

• Data availability significantly varied across benchmark types:

- - Bisphenol A

This analysis demonstrated that publicly accessible data and opensource programs can be efficiently integrated and used for large-scale ecotoxicological risk assessment and chemical prioritization.

We would like to acknowledge the Great Lakes Restoration Initiative for their support of this study.

*Content does not necessarily reflect positions or policies of associated agencies.

Erin Maloney | malon.625@d.umn.edu | 218-340-5231

[23] US EPA (2016). Toxicity Estimation Software Tool (T.E.S.T.) [24] Benfenati E, Manganaro A, Gini G. (2013). VEGA-QSAR: AI inside a platform for predictive

[18] US EPA (2018). Region 4 Ecological Risk Assessment Supplemental Guidance. [25] Berninger JP, LaLone CA, Villeneuve DL, Ankley GA. (2016). doi: https//doi.org/10.1002/etc.2965.

[20] Busch W, Schmidt S, Kuhne R, Shulze T, Krauss M, Altenburger R. (2016). [26] De Cicco LA., Corsi SR, Villeneuve DL, Blackwell BR, Ankley GT. (2020). doi:19.5966.O906UQ5I.

[27] US EPA (2018). ToxCast Screening Assay In Vitro DB (v.3). [28] Fay KA, Villeneuve DL, Swintek J, Edwards SW, Nelms MD, Blackwell BR, Ankley

[22] US EPA (2017). Ecological Structure-Activity Relationship (ECOSAR) Model. GT. (2018). doi: 10.1093/toxsci/kfv049.

Key Findings

• QSAR, Screening, and ToxCast/Cytotox benchmarks had the highest amounts of available data (96, 82, & 57% data coverage)

• Water Quality, Pharmaceutical, and Tier 2 ECOTOX benchmarks had the lowest amounts available data (14, 29, 32 % data coverage).

• Benchmark exceedence also significantly varied across benchmark types:

 Water Quality, AF-adjusted Tier 1 + 2 ECOTOX, and Screening benchmarks had the highest amount of chemicals with TQ > 1 (60, 44, 53, 30 % exceedence across data-available chemicals).

• QSAR, Pharmaceutical, ToxCast, and Cytotoxicity benchmarks had the lowest amounts of chemicals with TQ > 1 (0.2, 0.01, 2, 8 % exceedence across data-available chemicals).

• Benchmark analysis highlighted **13 high priority chemicals**:

• **12 chemicals** exceeded water quality and *in vivo* benchmarks: • 9 pesticides (atrazine, chlorpyrifos, dichlorvos, diazinon, imidacloprid, pentachlorophenol, diuron, metribuzin, carbaryl), 1 personal care product (triclosan), and 2 industrial chemicals (bis(2-ethylhexyl) phthalate, pyrene).

• 1 compound exceeded all water quality, *in vivo*, and *in vitro* benchmarks:

Acknowledgements