

Bioinformatics for Cross-Species Chemical Susceptibility Prediction and Interpretation of In Vitro Screening Results: Case Study using a Thyroid Deiodinase Enzyme

Sally Mayasich^{1,2*}, Michael-Rock Goldsmith², Sara Vliet^{2*}, Donovan Blatz^{2*3}, and Carlie LaLone^{2*}

University of Wisconsin-Madison Aquatic Sciences Center Post-doctoral fellow at
 U.S. Environmental Protection Agency, Office of Research & Development, Center for
 Computational Toxicology & Exposure, *Great Lakes Toxicology & Ecology Division, Duluth, MN, USA
 Oak Ridge Institute for Science & Education, Oak Ridge, TN, USA

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Agency

Deiodination of thyroid hormone substrates

Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development.

Previous screening Toxicology in Vitro 73 (2021) 105141 Contents lists available at ScienceDirect Toxicology in Vitro journal homepage: www.elsevier.com/locate/toxinvit

Sally A. Mayasich^{a,b}, Joseph J. Korte^{b,1}, Jeffrey S. Denny^b, Phillip C. Hartig^c, Jennifer H. Olker^b, Philip DeGoey^b, Joseph O'Flanagan^{b,d}, Sigmund J. Degitz^b, Michael W. Hornung^{b,*}

^c Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.

Toxicology in Vitro

^a Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA

^b Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA

^d Oak Ridge Associated Universities, Oak Ridge, TN, USA

Previous screening results

Potent inhibitors with Hill slopes and IC50 not significantly different between species

Previous screening results

Chemicals for which concentration-response **curves differed** between species potentially due to non-competitive (allosteric) inhibition

Concentration (µM)

Schweizer et al (2014) determined important catalytic site amino acid residues using mouse dio3

Ulrich Schweizer et al. PNAS 2014;111:29:10526-10531

SeqAPASS V6.0 Level 3 Evaluation Primary Results

Amino acid residue alignment with hDIO3. Other critical residue positions were highly conserved.

		10.00 E0.00						
	Partial Match Sus	sceptible Yes						
	Not a Match 📕 Sus	sceptible No		C168	T169	C239	A240	Y257
Scientific Name	Common Name	Simi Suscept	lar ibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4	Amino Acid 5
Homo sapiens	Human	Y		168C	169T	239C	240A	257Y
Latimeria chalumnae	Coelacanth	N		131C	132T	202C	203F	220Y
Clupea harengus	Atlantic herring	Y		122C	123T	193C	194V	211Y
Gadus morhua	Atlantic cod	Y		184C	185T	255C	256A	273Y
Carassius auratus	Goldfish	Y		135C	136S	206S	207A	224Y
Amphiprion ocellaris	Clown anemonefish	Y		123C	124T	194C	195L	212Y
Sciaenops ocellatus	Red drum	N		130C	131S	2018	202N	219Y
Oreochromis aureus	Blue tilapia	Y		123C	124T	194C	195L	212Y
Maylandia zebra	Zebra mbuna	N		130C	1315	201T	202N	219Y
Solea senegalensis	Senegalese sole	N		130C	1315	201G	202N	219Y
Cottoperca gobio	Thornfishes	Y		123C	124T	194C	195P	212Y
Gymnodraco acuticeps	Antarctic dragonfishes	Y		123C	124T	194C	195P	212Y
Morone saxatilis	Striped sea-bass	N		123C	124T	194C	195M	212Y
Micropterus salmoides	Largemouth bass	Y		123C	124T	194C	195L	212Y
Neoceratodus forsteri	Australian lungfish	Y		133C	134T	204C	205L	222F
Eleutherodactylus coqui	Puerto Rican coqui	N		130C	131T	201C	202R	219Y
Xenopus tropicalis	Tropical clawed frog	N		130C	131T	201C	202R	219Y
Xenopus laevis	African clawed frog	N		128C	129T	199C	200R	217Y
Lithobates catesbeianus	American bullfrog	N		131C	132T	202C	203R	220Y
Petromyzon marinus	Sea lamprey	N		143G	144S	215C	216P	233A

Total Match

Single amino acid modifications selected to represent variations in other species at positions critical to enzyme catalytic function

	SeC170	Glu	200 His202	His219			
Xldio3 GKRE	PLVVNFG S<mark>CTU</mark>PPFMAR	LQAYRRLAAQHVGIADFLL V	YIE <mark>E</mark> A <mark>H</mark> PSDGWLSTDAS	SYQIPQ h QCLQDRLAAA			
hDIO3 GNRE	PLVLNFG S<mark>CTU</mark>PP FMAR	MSAFQRLVTKYQRDVDFLI I	YIEEAHPSDGWVTTDSF	PYIIPQ h rsledrvsaa			
mdio3 GTRE	PLVLNFG <mark>S<mark>CTU</mark>PPFMAR</mark>	MSAFQRLVTKYQRDVDFLI I	YIEEAHPSDGWVTTDSF	PYVIPQ h rsledrvsaa			
* **	***:***	· · · · · · · · · · · · · · · · · · ·	**********************	* ****: ***: **			
	Cys239	Tyr257	Arg275				
Xldio3 QLMA	QGAPG <mark>CR</mark> VVVDTMDNS	SNAAYGA <mark>YFE</mark> RLYIVLEGKV	VYQGG r gpegy				
hdio3 pvlqqøapg <mark>c</mark> atvldtmanssssayga <mark>yfe</mark> rlyviqsgtimyqgg <mark>r</mark> gpdgy							
mdio3 / RVLQQGAPG <mark>C</mark> ALVLDTMANSSSSAYGA <mark>YFE</mark> RLYVIQSGTIMYQGG <mark>R</mark> GPDGY							
:;/:	*******	*.:************************************	• * * * * * * * * * * * * * * * * * * *				
C168G, T169S	C239S, A240R	Y257A, Y257F					
Lamprey Fish	Fish Frogs	Lamprey Lungfish					
Catalytic site	Cofactor site	Catalytic site structure					

Molecular modeling

- Mouse dio3 crystal structure
 - Human homology model
- Catalytic (T4/T3 substrate binding) site
- Cofactor binding site
 - In vivo cofactor unknown (PRX?)
 - In vitro cofactor DTT (dithiothreitol)

Molecular Operating Environment (MOE) Chemical Computing Group

Video showing mutation locations

Virtual docking affinity (S) scores through in-silico mutagenesis

Docking limitations:

- Solvent (water) often ignored by docking programs
- Lack of motion (ligand is flexible but protein is rigid)
- Interaction calculations are conducted with simple potential energy functions rather than more accurate quantum mechanics
- Complexity of the type 3 deiodinase molecule!

Molecular Operating Environment (MOE) Chemical Computing Group

Video showing kepone binding to cofactor location

Hypotheses for protein-ligand interactions

- Putative specific competitive inhibitors (Xanthohumol, Fiptonil)
 - Hypothesis: difference among catalytic site variants
 - C168G, T169S (catalysis) Y257A, Y257F (structure)
 - No difference among cofactor site variants
 - C239S, A240R (cofactor interaction and catalysis)
- Putative allosteric inhibitors (Kepone, NDGA)
 - Hypothesis: no difference among catalytic site variants
 - C168G, T169S (catalysis) Y257A, Y257F (structure)
 - Difference among cofactor site variants
 - C239S, A240R (cofactor interaction and catalysis)

Protein expression & deiodinase in vitro screening assay methods

detect free iodide at absorbance of 420 nm in a 96-well plate reader.

Xanthohumol

Xanthohumol

Fipronil

Summary

- Small differences in IC_{50} s predicted by small differences in affinity scores
- A240R curves/IC₅₀s were similar to wildtype for all chemicals
- Putative specific competitive inhibitors (Xanthohumol, Fipronil)
 - Difference among catalytic site variants
 - C168G, T169S (catalysis), Y257F (structure)
- Putative allosteric inhibitors
 - NDGA: difference among catalytic and cofactor variants
 - C168G (catalysis), Y257A (Structure), & C239S (cofactor)
 - Kepone: difference for cofactor site and structure variants
 - C239S (cofactor interaction and catalysis) Y257F (structure)
- For theses chemicals: minor implications for species with these amino acid variations in the type 3 iodothyronine deiodinase enzyme

Acknowledgements

EPA/GLTED Bioinformatics team

Sara Vliet Jenna Cavallin Donovan Blatz Carlie LaLone

EPA/GLTED Thyroid team Philip DeGoey Joe O'Flanagan Mike Hornung Sig Degitz

EPA, Durham, NC

Michael "Rocky" Goldsmith, computational chemistry (MOE)

This work was funded wholly by the U.S. Environmental Protection Agency. Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.