Risk-based Prioritization of Contaminants of Emerging Concern Detected in Great Lakes Tributaries, 2010-2018.

Daniel L. Villeneuve¹, Erin M. Maloney², Matthew A. Pronschinske³, Austin Baldwin⁴, Steve Corsi³, Kimani Kimbrough⁵, Michael Edwards⁵, John Frisch⁶, Stephanie Hummel⁷, Amber Bellamy⁷, Natalia Vinas⁸

¹ US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
 ² University of Minnesota-Duluth, Duluth, MN, USA
 ³ US Geological Survey, Upper Midwest Water Science Center, Middleton, WI, USA

⁴ US Geological Survey, Idaho Water Science Center,
 ⁵ National Centers for Coastal Ocean Science, NOAA National Ocean Service, Bethesda, MD, USA

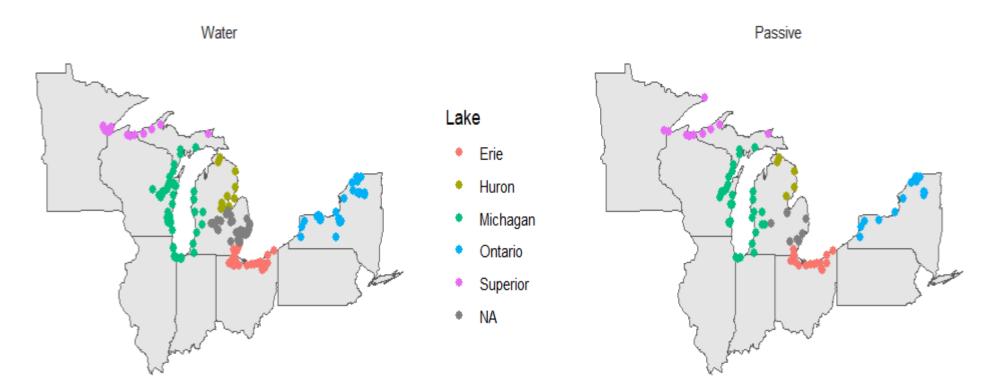
⁶ General Dynamics Information Technology, Duluth, MN, USA
 ⁷ US Fish and Wildlife Service, Ecological Services, Bloomington, MN, USA
 ⁸ US Army Corps of Engineers, Engineer Research and Development Centre, Vicksburg, MS, USA

The contents of this presentation neither constitute, nor necessarily reflect US EPA policy.

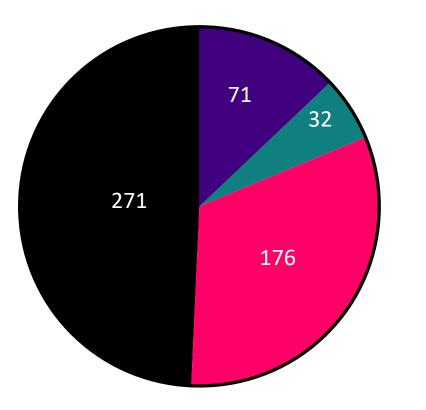
- Focus Area 1: Toxic Substances and Areas of Concern
 - Goal 5: The health and integrity of wildlife populations and habitat are protected from adverse chemical and biological effects associated with the presence of toxic substances in the Great Lake Basin.
 - Increase knowledge about contaminants in Great Lakes fish and wildlife
 - Identify emerging contaminants and assess impacts on Great Lakes fish and wildlife

Great Lakes RESTORATION

Prioritization:


Which chemical(s) are of potential concern for impacts on Great Lakes ecosystems?

- Prioritization has been conducted on numerous sub-sets (e.g., certain years, chemical classes, locations, etc.).
 - Pronschinske et al. pharmaceuticals [05.11.07]
 - Baldwin et al. sediment [02.04.17]
 - Maloney et al Milwaukee [05.06.02]
 - Corsi et al. PFAS [05.06.15]
 - Multiple peer reviewed publications
- Present study takes a more global view across all water and passive samples collected over the eight year monitoring effort.


Chemicals Monitored

- 2010-2018
- 830 unique compounds
- Chemical Classes: antimicrobial disinfectants, antioxidants, detergent metabolites, dyes/pigments, fire retardants, flavours and fragrances, fuels, hormones, multi-use, PAHs, pesticides, pharmaceuticals, and personal care products (PPCPs), plastics additives, solvents, and sterols.
- Uneven coverage some intensively sample areas, some sparsely sample

Chemicals detected

Out of 830 monitored, 550 were detected in grab/composite and/or passive samples

- 49.27% Pesticides
 32.00% PPCPs
- **5.82%** PAHs/Fuels
 - 12.91% Other
 - (Industrial, Waste Indicators)

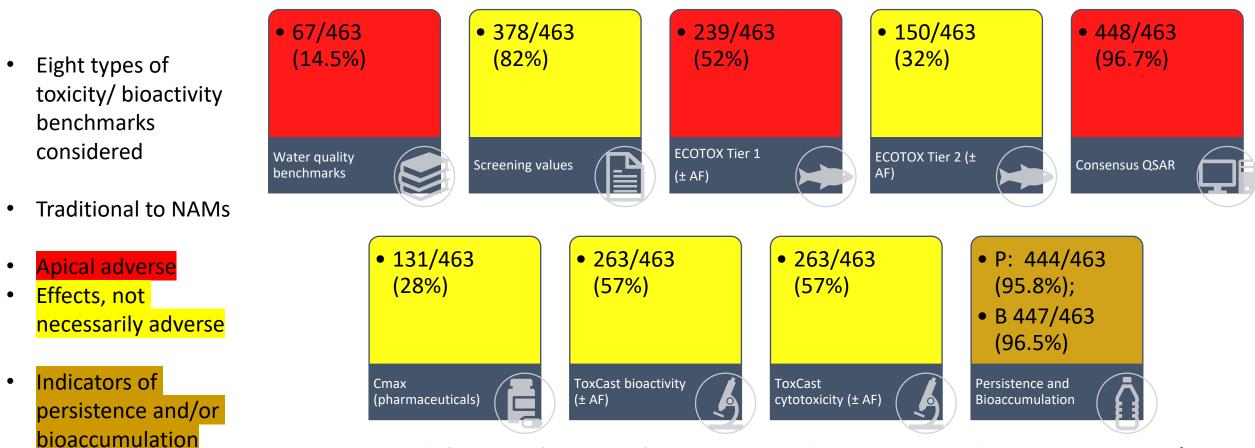
463 detected in grab/composites

278 detected from passive samplers

(191 detected in both)

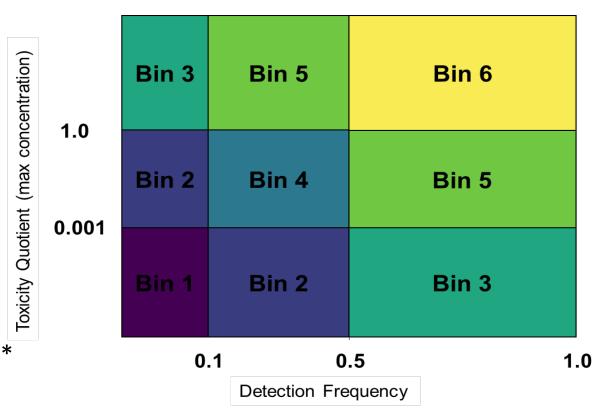
Total=550

Putting concentrations into context

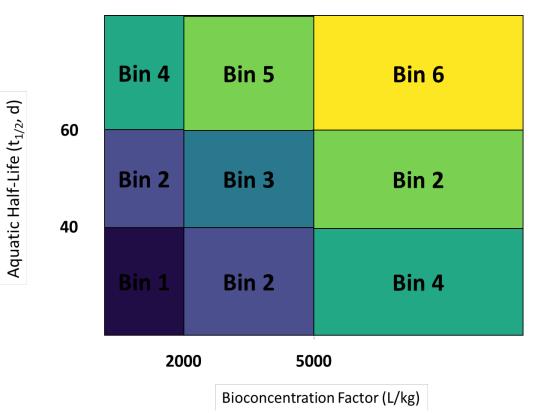

Risk-based prioritization

Toxicity Quotient $(TQ)_{x,n} = \frac{[x]_{max}}{toxcity or bioactivity benchmark concentration_n}$

- Used maximum concentration detected across all samples
- Concentration distribution, sampling effort, and site-specificity next tier


Putting concentrations into context

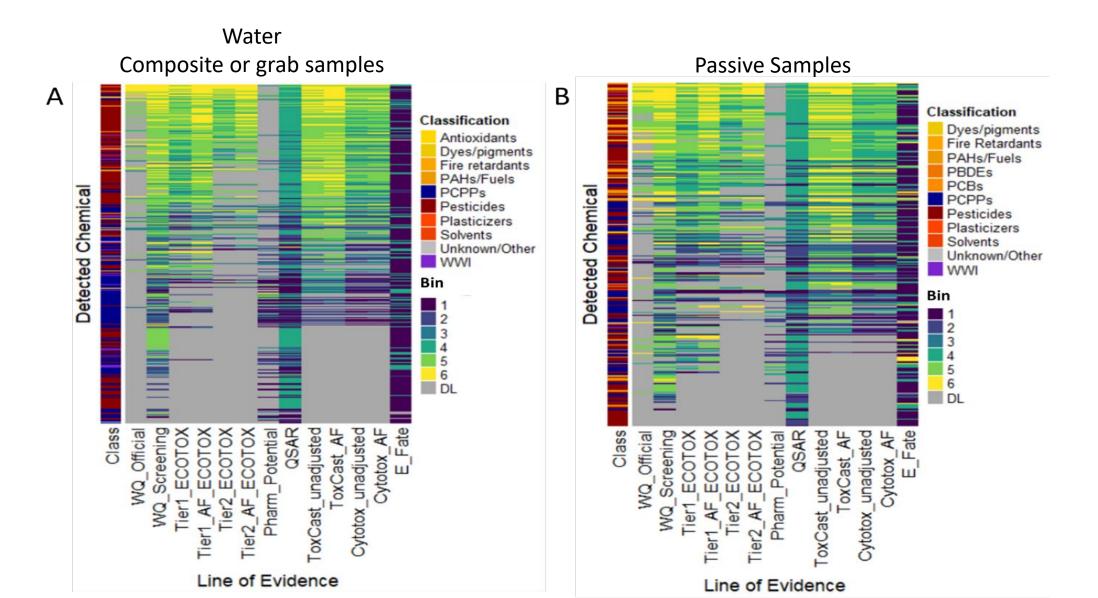
Hazard benchmarks considered and coverage*


*Coverage listed is for chemicals detected in water; 87 additional compounds detected via passive samplers not considered here.

Dimensional prioritization (within each line of evidence)

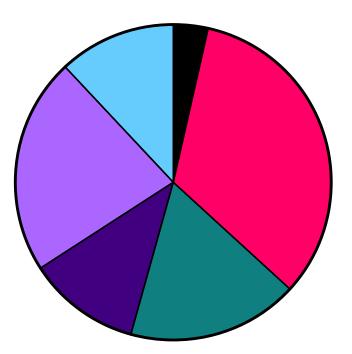
Risk-based prioritization

P/B considerations


*TQ cut-off for bins vary by benchmark type

Overall prioritization

 Greater median bin score > greater concern / priority


	Chemical 1	Chemical 2	Chemical
Lines of evidence	Bin scores	Bin scores	Bin scores
Water quality benchmarks			
Screening values			
ECOTOX Tier 1 (± AF)			
ECOTOX Tier 2 (± AF)			
Consensus QSAR			
Cmax (pharmaceuticals)			
ToxCast bioactivity (± AF)			
ToxCast cytotoxicity (± AF)			
Persistence and Bioaccumulation			
MEDIAN BIN SCORE			

Overall prioritization

Risk-based Prioritization

Based on median bin score

3.55% Bin 6
33.26% Bin 5
17.52% Bin 4
11.53% Bin 3
22.17% Bin 2
11.97% Bin 1

High Priority (37%)

- A measured concentration exceeded one or more hazard/fate thresholds
- Frequently detected among the samples collected

Tris(dichloroisopropyl)phosphateNaledTris(2-butoxyethyl)phosphateDiuronPyreneAcetorFluorantheneDiflubSimazineChloriAtrazineTolyltrImidaclopridCaffeirMetribuzinBisphere

Diuron Acetochlor Diflubenzuron Chlorimuron-ethyl Tolyltriazole Caffeine Bisphenol A

Median bin score <u>6</u>

Low Priority (34%)

- Maximum concentration generally did not exceed benchmark(s)
- Infrequently detected among the samples collected

Examples:

Median bin

H

score

Isoborneol, Epitestosterone, Nordiazepam, Nevirapine, Abacavir, Sulfadimethoxine, Alprazolam, Quetiapine, Oxaprozin, Oseltamivir, Diazepam (valium), Sumatriptan, Indapamide, Fenofibrate, Amphetamine, Penciclovir

Adding consideration of information richness

• Extent of the evidence was considered to determine whether:

Lines of Evidence for Hazard Evaluation	Extent of sampling (#'s, sites)	Priority For
Multiple (e.g., ≥ 6)	>200 samples >10 locations	Detailed risk assessment / management action
Limited	Extensive	Additional hazard characterization
Extensive	Limited	Additional monitoring
Limited	Limited	Additional information gathering

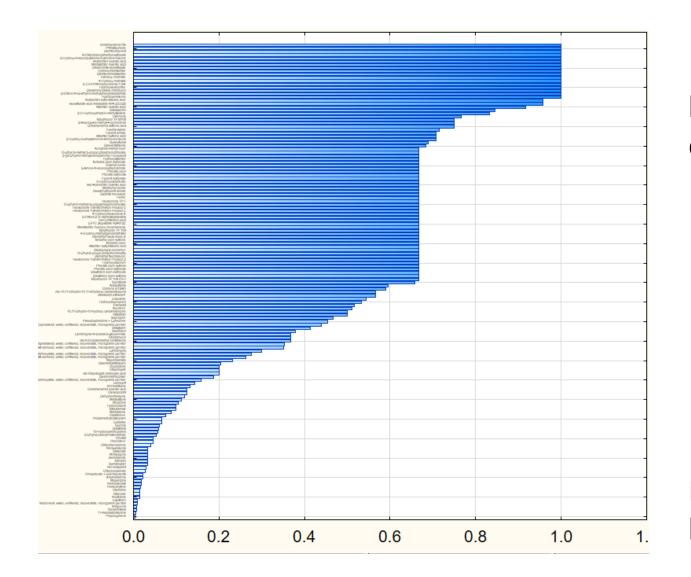
Candidates for Detailed Risk Assessment*

Water Composite or grab samples

- Multiple lines of available evidence (≥6)
- Higher median bin scores (5-6)
- Frequently sampled (≥75% of max) and detected (≥50%)

*Deeper dive into the details

- Which benchmarks exceeded
- Quality/reliability of BMs exceeded
- At which locations
- Etc.


Category (9)	Compounds (21)
Antimicrobials (1)	triclosan
WW indicator (2)	p-cresol, caffeine
Fire retardants (3)	tributyl phosphate, tris(dichloroisopropyl)phosphate, tris(2- butoxyethyl)phosphate
Multi-use (1)	1,4-dichlorobenzene
PAHs (4)	Pyrene, fluoranthene, benzo[a]pyrene, phenanthrene
Pesticides (5)	atrazine, metolachlor, dichlorvos, carbaryl, pentachlorophenol
PPCPs (1)	venlafaxine
Plasticizers (3)	triphenyl phosphate, bis(2- ethylhexyl)phthalate, bisphenol A
Solvent (1)	isophorone

Information rich, low priority

- Sampled at high frequency
- Multiple benchmark types available
- Low median bin scores

- Pesticides
 - Chlorpyrifos
 - Diazinon
- PPCPs
 - Paroxetine
 - Warfarin
 - Norethindrone
 - Codeine

Prioritize for hazard data collection

146 chemical for which no WQ benchmarks, ECOTOX, or ToxCast data were available

Pesticide degradates	69
PPCPs	66
Detergent metabolites	4
Flavors/fragrances	1
Hormones	2
Sterols	2
Other	2

Prioritized for hazard data collection based on detection frequency

Conclusions

- Priority chemicals have been identified based on:
 - Eight-year interagency CEC monitoring effort
 - Nine lines of evidence
 - QSAR, in vitro bioactivity, in vivo toxicity, chem properties
- There is a small proportion of the prioritized chemicals for which information availability is likely high enough to support a risk assessment.
- Among the ≈170 prioritized CECs, deeper dive into the type of benchmarks exceeded and sampling intensity will guide collection of additional information.
- At present, around 570 of the 830 monitored compounds for which there was currently no evidence of potential ecological risk across the G.L. tributaries sampled.

Acknowledgements

- **US Fish and Wildlife Service** (Bloomington, MN)
 - St. Cloud State University (St. Cloud, MN)
 - Central Michigan University (Mount Pleasant, MI)
- **US Geological Survey** (offices in La Crosse and Middleton, WI, and Mounds View, MN)
- **US Environmental Protection Agency**
 - ORD/ (offices in Athens, GA, Cincinnati, OH, and Duluth, MN)
 - Great Lakes National Program Office (Chicago)
- Army Corps of Engineers (ACOE)/Engineer Research and Development Center (ERDC) (Vicksburg, MS)
- **National Oceanic and Atmospheric** Administration/Center for Coastal Monitoring and Assessment (Silver Spring, MD)

INNOVATIVE SOLUTIONS

for a safer, better world

