www.epa.gov

Tyler D.T. Shonrock ¹, Lawrence P. Burkhard ²

¹Oak Ridge Association University contractor to US Environmental Protection Agency / ORD /CCTE/ Great Lakes Toxicology and Ecology Division, Duluth, MN ² US Environmental Protection Agency / ORD / CCTE/Great Lakes Toxicology and Ecology Division, Duluth, MN

Abstract

Per- and poly-fluorinated compounds (PFAS) are a group of chemicals created by humans, that have become a growing concern in the environment. To predict and model the movement of PFAS chemicals through the environment, partition coefficients such as n-octanol-water (K_{OW}), organic carbonwater (K_{OC}) , and Henry's law constants (H) are needed. Measurements for K_{OW} are limited for PFASs and using the OECD-123 Slow Stir method, we have measured the $\log K_{OW}$ s of octafluoronaphthalene (3.53 sd=0.076, n=12), decafluorobiphenyl (4.58 sd=0.036, n=5), and decachlorobiphenyl (PCB209) (8.16 sd=0.13, n=5). Measurements are underway on four aliphatic fluorocarbons: perfluorodecalin, perfluoroctane, perfluorodecane, and perfluoropentadecane. The measured K_{OW}s will be compared to predictions from a variety of predictive methods including EPISuite, OPERA, ACD, and Chemaxon. n-Butanol/water partition coefficients (K_{BW}) are also being measured to determine if the K_{OW} - K_{BW} pairs reside on the linear free energy relationship between these partition coefficients developed using non-fluorinated organic chemicals. We have measured the log K_{BW} s of hexachlorobenzene (4.04 sd=0.055, n=4), and octafluoronaphthalene (3.00 sd=0.053, n=6).

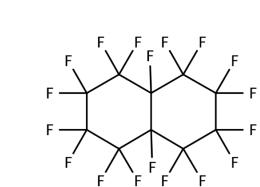
Introduction

n-Octanol/water partition coefficients $(K_{OW}s)$ are an important parameter used to assess environmental fate, bioaccumulation, and effects of organic chemicals

- Traditionally, the K_{OW} is measured
- If not measured, K_{OW} is estimated
- EPI-Suite, ACD/Labs, ChemAxon, SPARC, ...
- For highly fluorinated chemicals, measurements are lacking.

Objectives

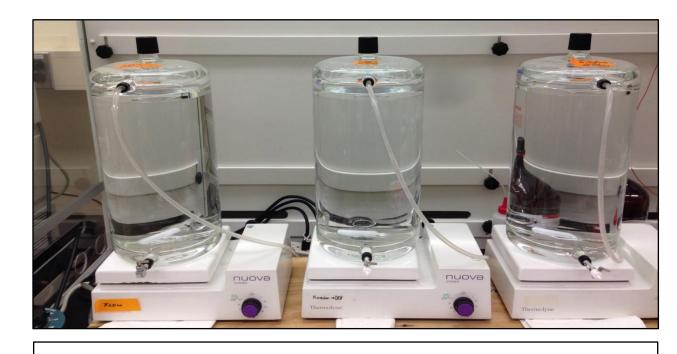
- Measure K_{OW}s for a few nonionic perfluorinated organic chemicals
- Measure K_{BW} s for a few nonionic perfluorinated organic chemicals
- Compare measurements of K_{OW}s to values estimated using software models
- Evaluate if $K_{OW} K_{BW}$ pairs align with linear free-energy relationship developed using non-fluorinated chemicals.


Slow Stir Measurement Method

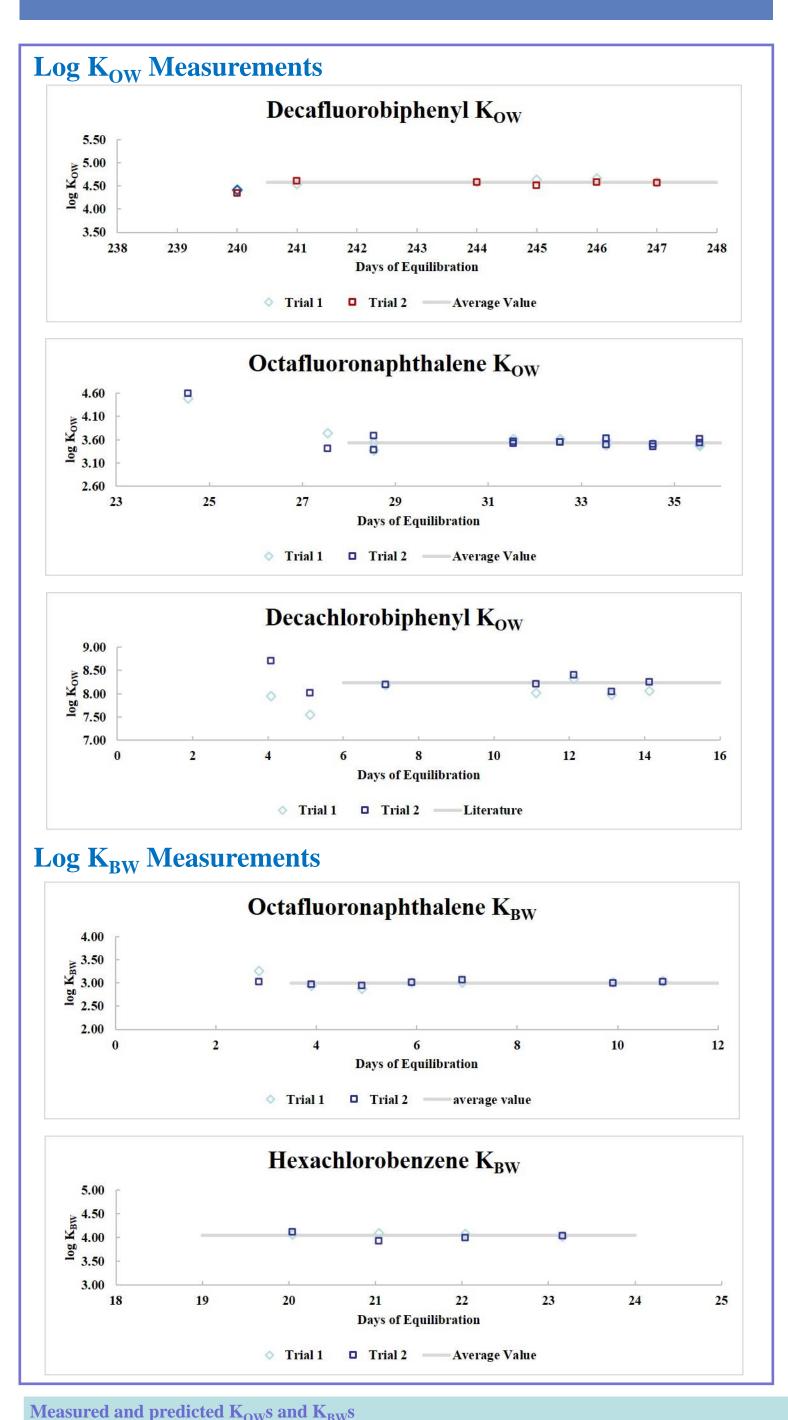
Available Techniques

• Slow Stir: OECD 123

Chemicals


- Hexachlorobenzene (HCB)
- Decachlorobiphenyl (PCB209)
- Decafluorobiphenyl (DFBP)
- Octafluoronaphthalene (OFNE)
- Perfluorooctane (PFO)
- Perfluorodecane (PFD)
- Perfluorodecalin (PFDC)

Approaches


- Sample both Octanol and H₂O layers of stir
- Using analytical techniques and GCMS instrumentation, quantify the concentration of analyte in each phase
- Aqueous Sample Volume Varied Based on Compound
- Higher K_{OW} value chemicals required larger H₂O samples for GCMS detection

OCMS dete	Cuon	
Chemical	Sample size	Extraction
Solvent		
HCB	5 mL	Hexane
DFBP	50 mL	Hexane
OFNE	50 mL	Pentane
DCBP	500 mL	Pentane
PFO	N.D.	Pentane
PFD	N.D.	Pentane
PFDC	N.D.	Pentane

Slow stir apparatus

Log K_{OW} and Log K_{BW} Measurement Results

Measured

 8.11 ± 0.15

 4.59 ± 0.026 (4)

PFDC

 4.07 ± 0.030

 2.99 ± 0.016 (2)

in progress

Literature

 5.73 ± 0.009

 8.22 ± 0.17 (10)

7.80

8.35

Predicted log K_{OW}s ACD/Labs **OPERA** ACD/Labs Consensus 4.89 5.35

8.30

4.44

3.63

6.59

7.95

5.62

5.81

7.43

6.03

Correlation between K_{BW} and K_{OW}

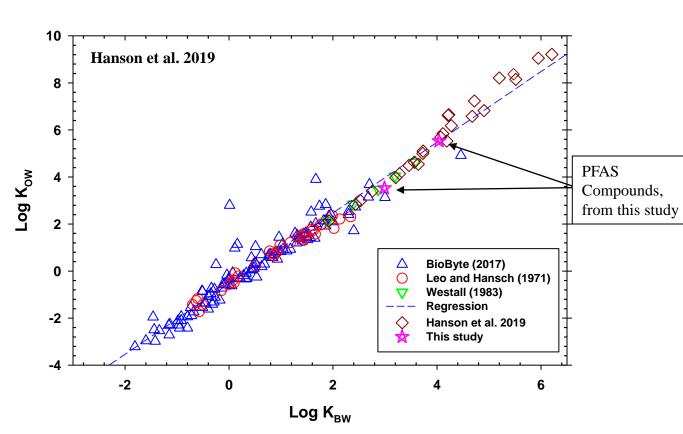
Collander (1951 Acta Chem Scand 5:774-780)

(9, 0.987)

Background

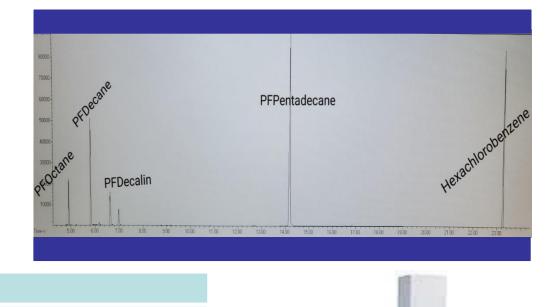
• Partition coefficients in different solvent systems are correlated:

 $\log K_1 = a \cdot \log K_2 + b$


Collander (1951)
$$log K_{iso-pentanol} = 1.17 log K_{iso-butanol} - 0.17$$

 $\log K_{\text{octanol}} = 1.24 \log K_{\text{iso-butanol}} - 0.42$

• Leo and Hansch (1971) $(n \quad r)$ (37, 0.985) $\log K_{\text{oleyl alcohol}} = 0.999 \log K_{\text{n-octanol}} - 0.575$ $\log K_{\text{n-pentanol}} = 0.808 \log K_{\text{n-octanol}} + 0.0271$ (19, 0.987) $\log K_{\text{n-butanol}} = 0.697 \log K_{\text{n-octanol}} + 0.381$ (57, 0.993)


Evaluating Octafluoronaphthalene K_{BW} – K_{OW} Pair $K_{BW} = 2.99 \pm 0.016$ $K_{OW} = 3.53 \pm 0.008$

 $\log K_{2-butanone} = 0.493 \log K_{n-octanol} + 0.315$

Observations

Pair follows the linear free-energy relationship of non-fluorinated chemicals

Conclusions, Predictions, & Next Steps

- Aromatic fluorocarbons: Successful measurements of K_{OW} and K_{BW}
- Alphatic fluorocarbons: Measurements in progress
- Comparison of predicted K_{OW} s to measured K_{OW} s for aromatic fluorocarbons:
- EPI Suite:

Tyler D.T. Shonrock, shonrock.tyler@epa.gov| 218-529-5174

- Predicted > measured by ten-fold for DFBP & OFNE
- OPERA:
- Predicted > measured by ten-fold for DFBP & OFNE
- ACD/Labs:
- DFBP: predicted > measured by ten-fold
- OFNE: accurate prediction of measured value
- ACD/Labs Consensus:
- Accurate prediction of measured values for DFBP & **OFNE**
- Linear free relationship between partition coefficients
- OFNE: K_{OW}-K_{BW} pair in agreement with relationship developed using non-fluorinated chemicals
- Nest Steps:
- Complete measurements on aliphatic fluorocarbons
- Transition to measurements on perfluorocarbon alcohols, amides ...

References

- Collander, R.U.N.A.R., Lindholm, M. and Haug, C.M. (1951) *Acta Chem*. Scand 5(12959), pp.774-780.
- De Bruijn, J., Busser, F., Seinen, W., & and Hermens, J. (1989). Environ *Toxicol Chem 8*(6), 499-512.
- Hanson, K. B., Hoff, D. J., Lahren, T. J., Mount, D. R., Squillace, A. J., & Burkhard, L. P. (2019). Chemosphere, 218, 616-623.
- Leo, A.J. and Hansch, C., 1971. The Journal of Organic Chemistry, 36(11),
- OECD. (2006). Test No. 123: Partition Coefficient (N-Octanol/Water): Slow Stirring Method. Paris, France: OECD Publishing

Acknowledgements

Plan: Chemical Safety for Sustainability Research Plan (CSS) Research Area: Ecotoxicological Assessment and Monitoring (ETAM) Task: CSS.6.6 — Improve ecological methods and models for predicting exposure, accumulation and effects of PFAS and other methodologically challenging compounds.

Product: CSS.6.6.1 — Methodically Challenging Chemicals (MCCs): Bioaccumulation of MCCs by Fish and Benthic Invertebrates