

SeqAPASS Version 6.0 – Integrating ecotoxicology data into sequence-based predictions of chemical susceptibility

ECOTOX v5

SeqAPASS v6

Presenter: Carlie A. LaLone, Ph.D.

Oct. 28th, 2021

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division

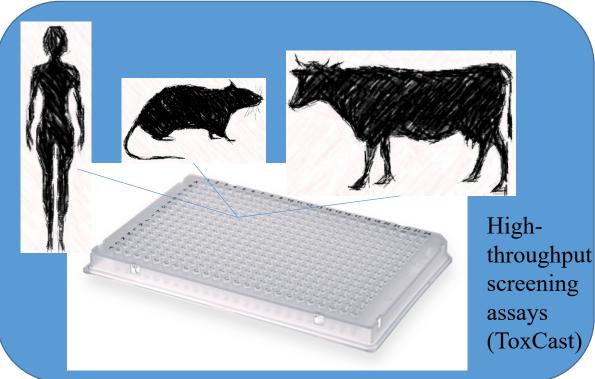
Overview

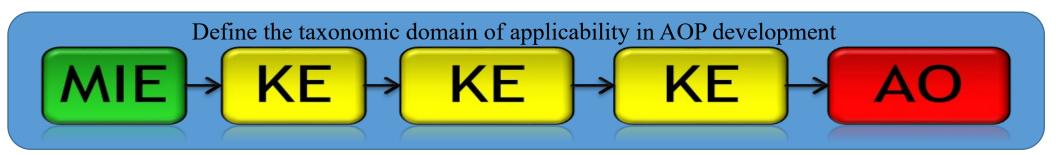
- Need for cross species extrapolation
- The Sequence Alignment to Predict Across Susceptibility (SeqAPASS) tool
- ECOTOX Knowledgebase
- Bridging sequence with existing empirical
- ECOTOX widget in SeqAPASS
- Case example with transthyretin

Toxicity Testing to Understand Chemical Safety

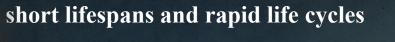
• **US EPA Examples:**

- Clean Air Act
- Clean Water Act
- Resource Recovery Act
- Endangered Species Act
- Food Quality Protection Act
- Endocrine Disruptor Screening Program
- Federal Insecticide, Fungicide, and Rodenticide Act
- Frank R. Lautenberg Chemical Safety for the 21st Century Act
- Comprehensive Environmental Response, Compensation, and Liability Act
- Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses




Need for Advances in Species Extrapolation

High throughput transcriptomics



Use of model organisms as surrogates representing the diversity of species in the environment

cheap and readily available

easy maintenance and good breeding capabilities

ability to control diet and surroundings

requires least space and time-consuming care

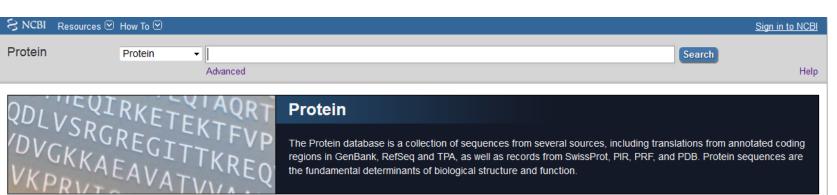
Species Extrapolation

<u>What is it?</u>

- Using existing knowledge about one species to estimate, predict, project, or infer the effect, impact, or trajectory of another species
 - For chemical safety typically dealing with toxicity

Why is it important:

- Limited or no toxicological data for the animal or plant species of interest reliance on surrogate (model organisms)
 - Impractical to generate new data for all species
- Testing resources are limited
 - International interest to reduce animal use
 - Ever-increasing demand to evaluate more chemicals in a timely and sometimes expedited manner
- Sensitivity of species must be estimated based on scientifically-sound methods of cross-species extrapolation
 - Immense diversity of species in the wild
 - Important challenge for species listed under the Endangered Species Act

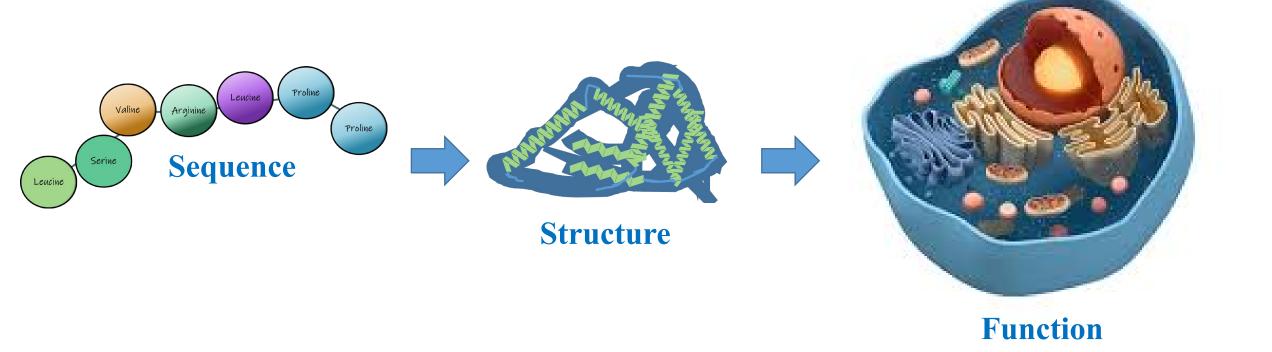

Where could we begin in understanding species similarities and differences?

Look for existing, expanding data that does not require the destruction of live organisms

Sequence and structural data: New tools and technologies have emerged

- Improved sequencing technologies
- Large databases of sequence data

NCBI: <u>210,703,648 Proteins</u> representing <u>113,002 Organisms</u>


Bioinformatics

- Combines mathematics, information science, and biology to <u>answer</u> <u>biological questions</u>
- Developing methodology and analysis tools to <u>explore large volumes</u> <u>of biological data</u>
 - Query, extract, store, organize, systematize, annotate, visualize, mine, and interpret complex data
 - Usually pertains to DNA and amino acid sequences

Let the computers do the work

Begin Simple and Advance as the Science Advances

Consider sequence and structural attributes to understand protein conservation across species

TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245

doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

Society of

Toxicology

www.toxsci.oxfordjournals.org

OXFORD

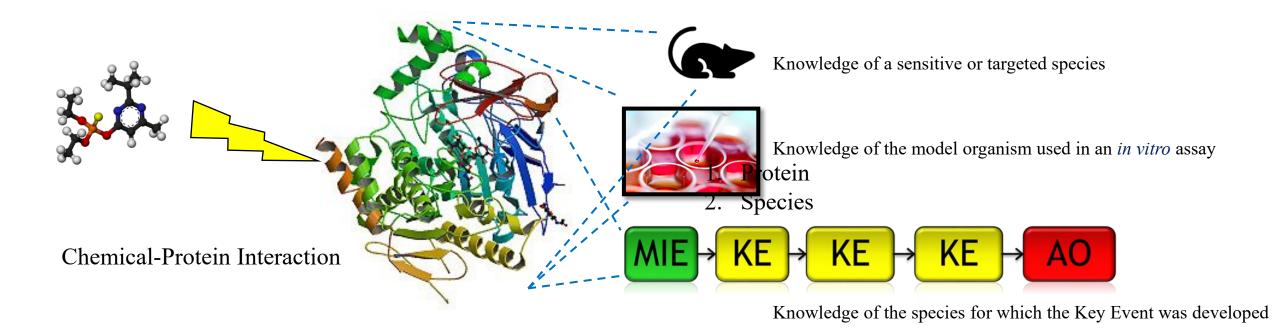
Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,^{*} David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,^{*} and Gerald T. Ankley^{*}

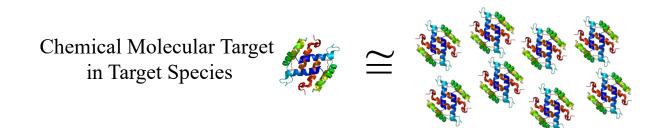
<u>Sequence Alignment to</u> <u>Predict Across Species</u>

https://seqapass.epa.gov/seqapass/

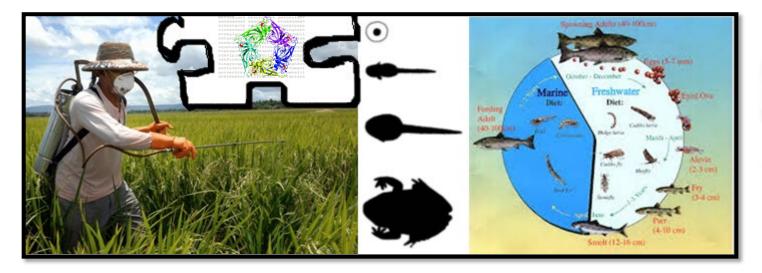
Susceptibility

(SeqAPASS)





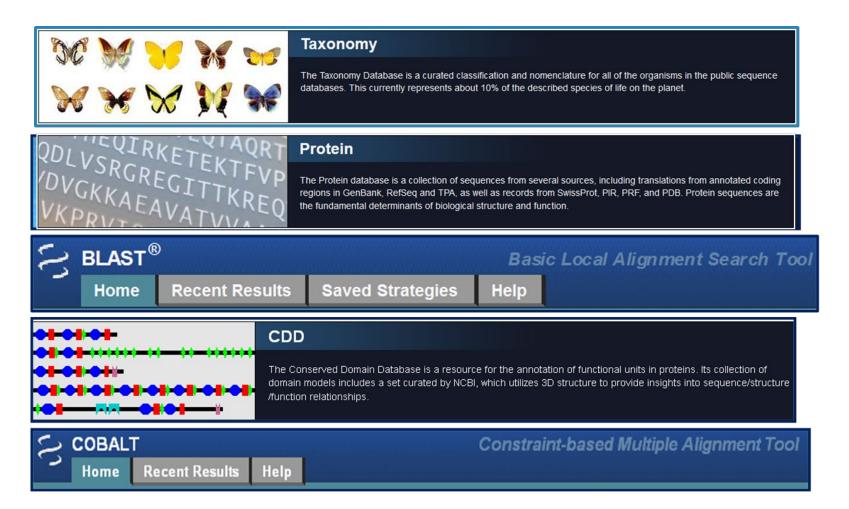
What information is required for a SeqAPASS query?


Compare to <u>Millions</u> of Proteins From <u>Thousands</u> of Species

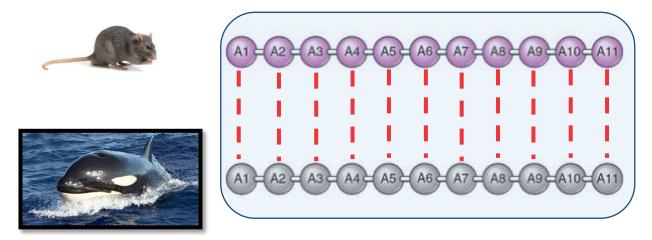
Greater similarity = Greater likelihood that <u>chemical can act on the protein</u> <u>Line of Evidence</u>: Predict Potential Chemical Susceptibility Across Species

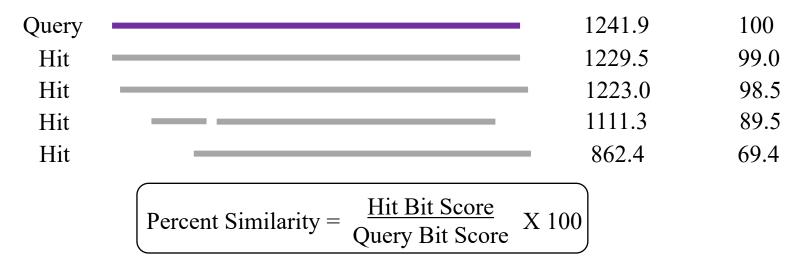
Predict Relative Intrinsic Susceptibility

- Intrinsic susceptibility can be defined as the vulnerability (or lack thereof) of an organism to chemical insult due to its inherent biological composition
 - Receptor/enzyme (protein) available for the chemical to act upon
- Relative: based on comparisons to a query protein
 - Molecular target conservation is but a component of multiple determinants of species susceptibility

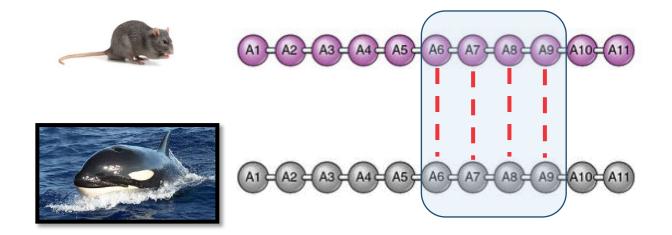


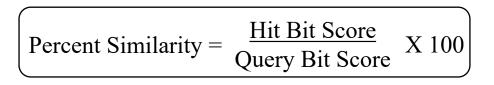
Available Databases and Tools


National Center for Biotechnology Information Established in 1988: a division of National Library of Medicine at NIH



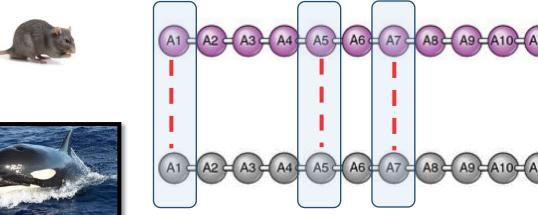
Primary Amino Acid Sequence Alignment

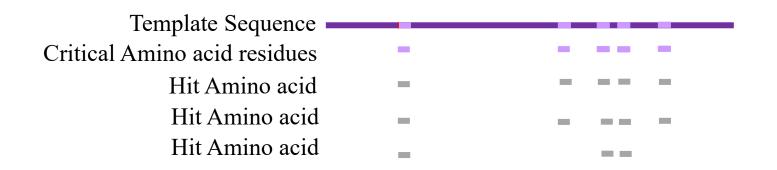

Bit Score Percent Similarity



SeqAPASS: Level 2

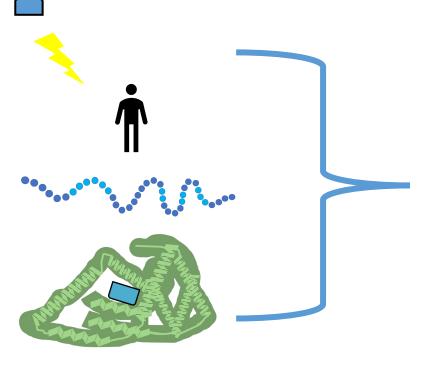
Functional Domain Sequence Alignment


	Primary Amino Acid Sequence	Bit Score	Percent Similarity
Query Sequence	Query Sequence domain	482.6	100
	Hit domain	471.9	97.8
	Hit domain	303.5	62.9
	Hit domain	100.1	20.7

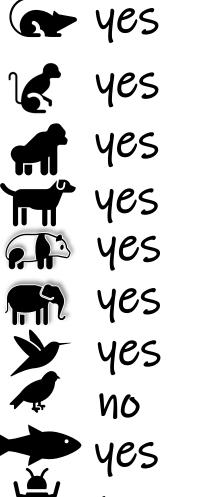


SeqAPASS: Level 3

Critical Amino Acid Sequence Alignment



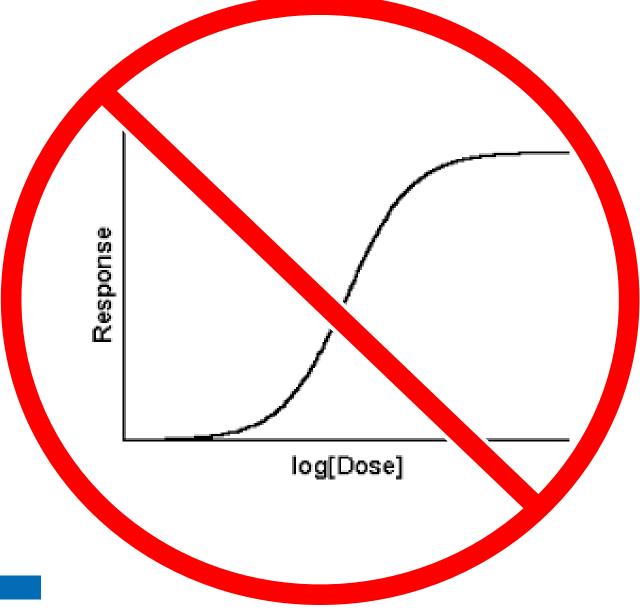
Rules to automate susceptibility prediction:


- Same side-chain classification as template •
- MW as measure of size 30g/mol or less from template •

Exact Match Partial Match Not a Match

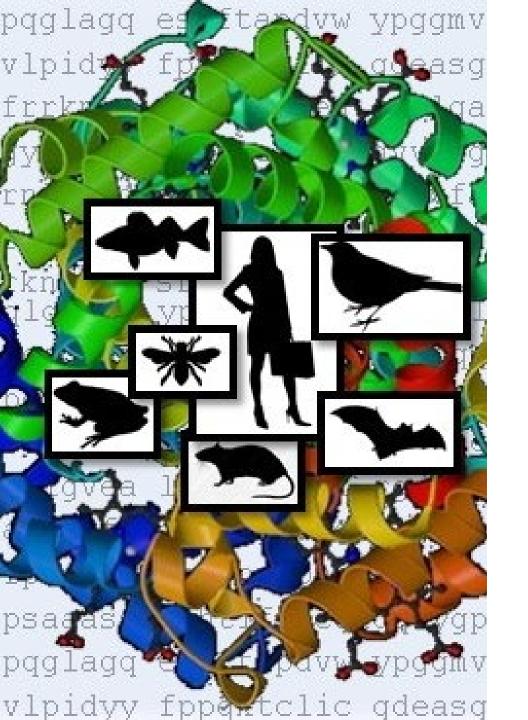
SeqAPASS Predicts Likelihood of Similar Susceptibility based on Sequence Conservation:

yes



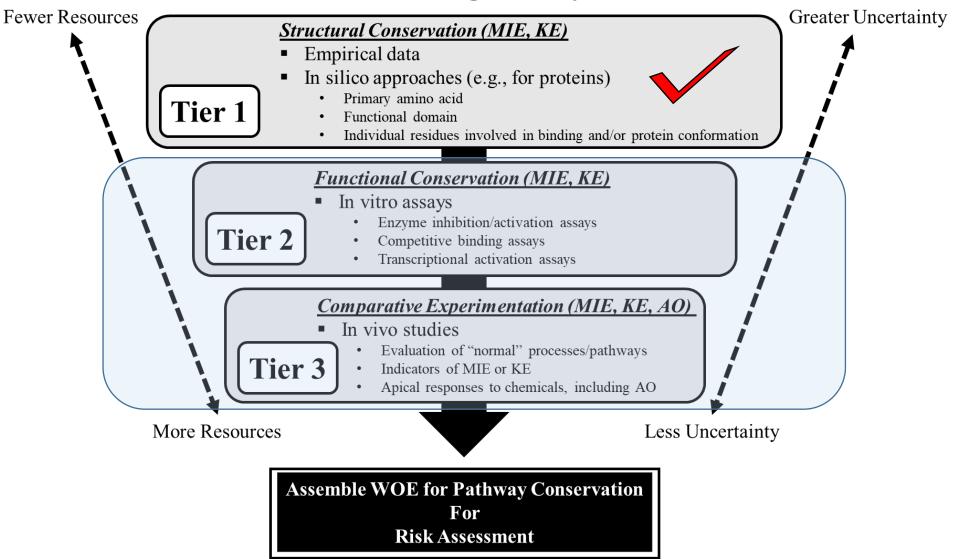
Line(s) of evidence indicate

- The protein is conserved
- The protein is NOT conserved


SeqAPASS DOES NOT predict the degree of sensitivity/susceptibility:

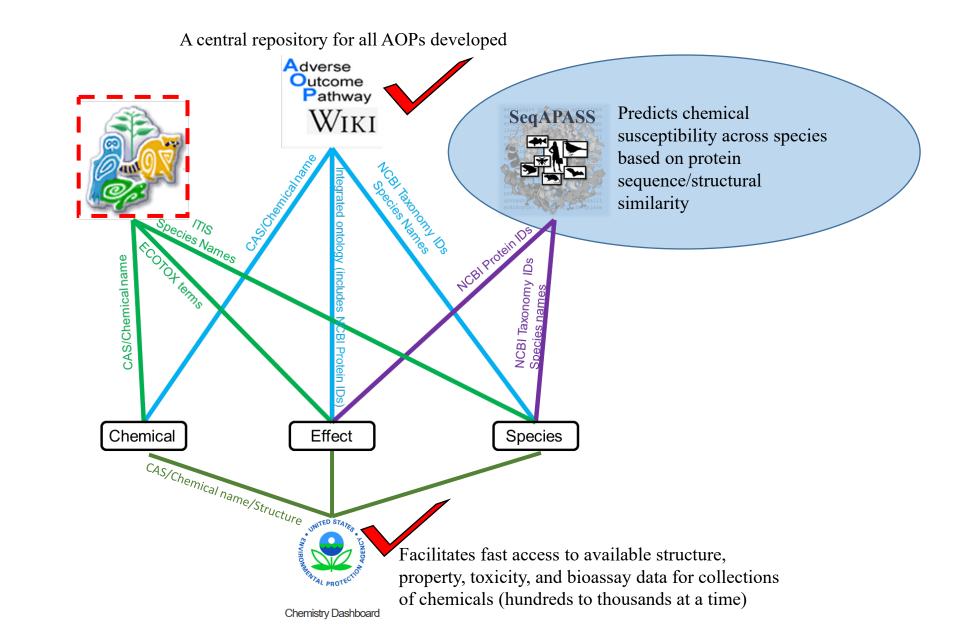
Factors that make a species sensitive

- Exposure
- Dose
- ADME
- Target receptor availability
- Life stage
- Life history
- etc.
- etc.

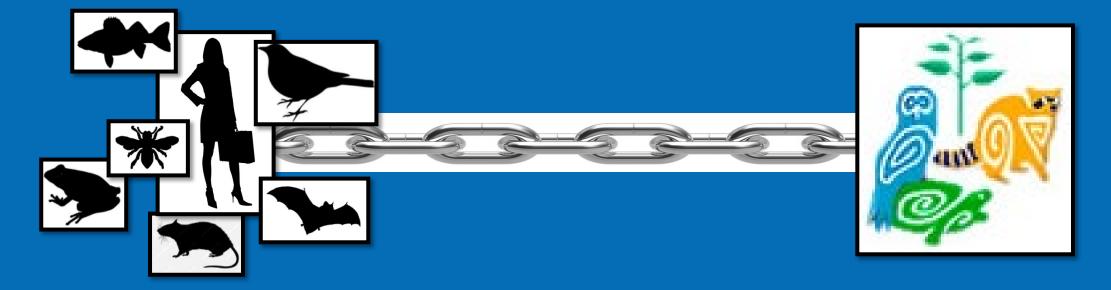


Strengths of SeqAPASS

- **<u>Publicly available</u>** to all
- Lines of evidence for conservation for <u>100s-1000s of</u> <u>species</u> rapidly
- Takes advantage of **well-established tools and databases**
- Streamlined, consistent, transparent, and published methods
 - <u>Case examples</u> to demonstrate applications
- <u>Guides users</u> to appropriate input
- **Evolves** as bioinformatics approaches become more user friendly
 - Smart automation or semi-automation



Framework for Evaluating Pathway Conservation



Facilitate rapid access to relevant data

Rapidly Connect Sequence-based predictions of chemical susceptibility to Available Toxicity Data

Evidence for structural and functional conservation

ECOTOXicology (ECOTOX) Knowledgebase

30+ year history:Originated in the early 1980sUS Environmental Protection Agency Office of Research and Development

				1		
ECOTOX Knowledge	ebase	Home	Search	Explore	Help	
Data last updated Sep 15, 2021 See update totals	Recent chemicals with full searches completed an Cyanotoxins		fluoroalkyl Subst	ances (PFAS)	Total in database 12,386 Chemicals	13,621 Species
					52,551 References	1,082,981 Results

WELCOME TO ECOTOX VERSION 5! Please click here to provide feedback so that we can continue to improve your experience.

Publicly available, curated database providing toxicity data from singe-chemical exposure studies to aquatic life, terrestrial plants, and wildlife

From comprehensive search and review of open and grey literature

- Data extracted from acceptable studies with up to 250 fields
- Updated quarterly

ECOTOX Knowledgebase

or

Applicability of Studies

• Paper must meet these criteria

- Single chemical exposure
- Ecologically-relevant species
- · Must be able to verify CAS registry numbers
- · Must be able to verify taxonomic information for test species
- Exposure to live organism, viable tissue or cells
- Report concurrent exposure concentration, dose or application rate
- Report duration of exposure
- Primary source of the data
- Study must be a full article in English
- The following studies are excluded
 - Air pollution studies related to CO2 and ozone
 - Studies on humans, monkeys, bacteria, viruses and yeast
 - Review and summary articles
 - Terrestrial studies with an inhalation route of exposure
 - Non-English publications and abstracts

EPA United States Environmental Protection Agency Rapidly connect predictions to empirical data

- 30+ year history of supporting EPA (Originated in the early 80's)
- Comprehensive, publicly available, curated database providing chemical environmental toxicity data on aquatic and terrestrial wildlife, including plants from the open literature
 - Curated data from 52,500+ publications
 - Species, Chemicals and number of records added each year

SEPA United States Environmental Protection Agency Rapidly connect predictions to empirical data

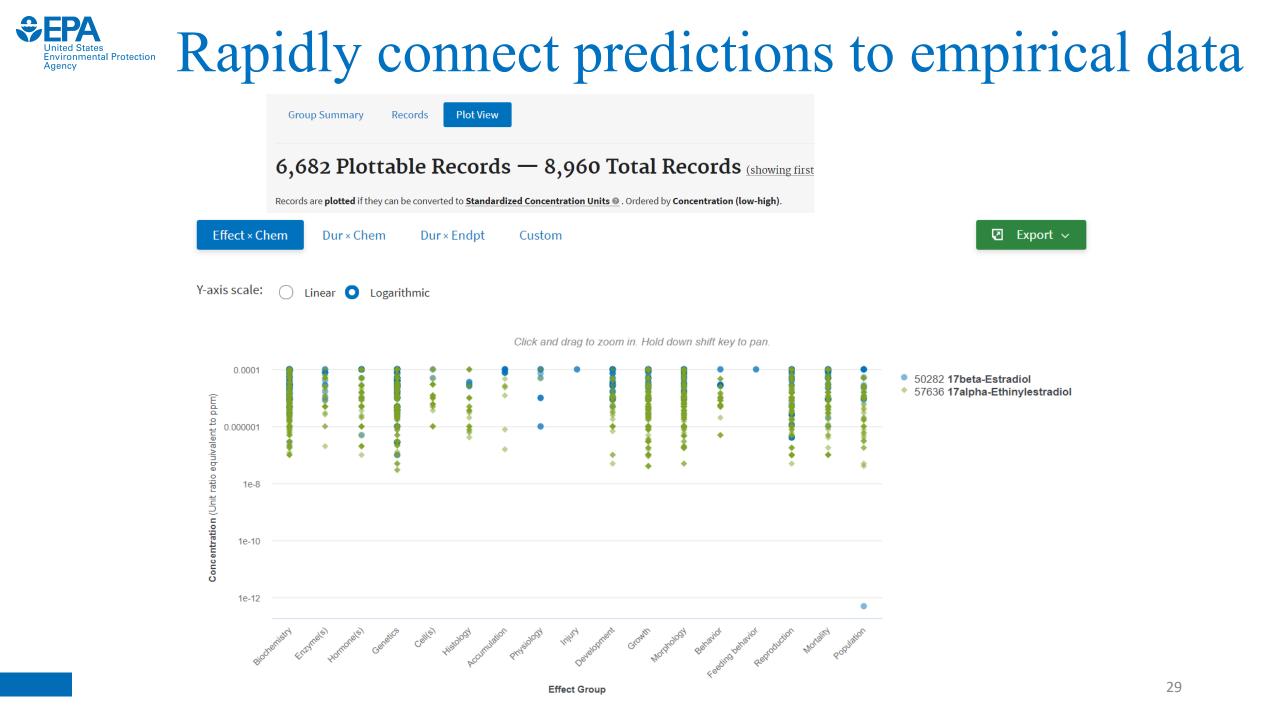
Choose Taxa/Species

Note: Must be less than 500 species to push to ECOTOX

	Select Taxonomic Groups (CLASS)	12			
Select All	Taxonomic Group		Select All	Select Species Species	Î
~	Mammalia			Human	
~	Testudines			Western gorilla	
	Aves			Chimpanzee	
~	Crocodylia			Western lowland gorilla	
-	Lepidosauria			Pygmy chimpanzee	
v	Amphibia			Bornean orangutan	
×	Chondrichthyes			Sumatran orangutan	
	Dipnomorpha			Sooty mangabey	
	Coelacanthiformes			Rhesus monkey	
~	Actinopteri			Crab-eating macaque	
	Cladistia			Pig-tailed macaque	-
		•	4		•
lax num	ber of species: 500		Commo	n Name	
lumber o	of species selected: 469		Scientifie	: Name	
				Push NCBI Tax IDs	

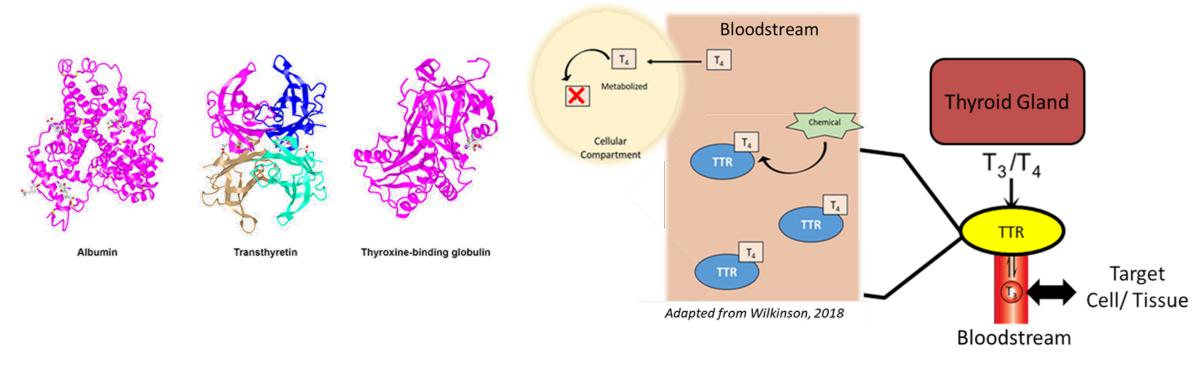
-

SEPA United States Environmental Protection Agency Rapidly connect predictions to empirical data


Select Chemicals

Note: Must be less than 5 chemicals to push to ECOTOX

	CompTox Chemical Dashboard
Chemical Search:	
Add Selected Chemical	ECOTOX Chemicals EXIT
Selected Chemicals:	17alpha-Ethinylestradiol (CASRN:57636) 17beta-Estradiol (CASRN:50282)
	Remove Selected Chemical Remove All Chemicals (2/5) CAS Numbers Selected


EPA United States Agency Rapidly connect predictions to empirical data

ECOTOX Knowled	lgebase	Ha	me Search	Explore He	lр	Cor	ntact Us
< Explore i 🎆 Species Cu	stom Group 🟾						
Aquatic	Group Summary R	ecords Plot View			🛛 Ser	nd Query Filters to Search	6
Query Filters 89 Species Select one or more of each filter to reduce the records. Species are ordered by Scientific Name (A-Z).							
Chemical Group (:	1) Showing all 89 species from A	canthogobius flavimanus to Zoa	rces viviparus				
All			RECORDS	PUBLICATIONS	YEAR MIN	YEAR MAX	
Chemicals (:	2) type to filter						
2 Selected V	Acanthogobius flavimanus	Yellowfin Goby	17	3	2003	2004	>
	Alligator mississippiensis	American Alligator	28	3	1997	1999	>
Class (14	4) Anguilla anguilla	Common Eel	17	6	1991	2004	>
All	Anguilla japonica	Japanese Eel	28	1	2012	2012	>
Order (3	2) Balanus amphitrite	Striped Barnacle	7	1	1998	1998	>
	Betta splendens	Siamese Fighting Fish	19	2	2006	2010	>

- <u>Thyroid hormone distribution</u> proteins, albumin, transthyretin (TTR), and thyroxine-binding globulin, are responsible for transporting thyroid hormone (TH) from the thyroid gland throughout the body to target cells
- Environmental <u>chemicals can competitively bind to TTR</u>, alter hormone homeostasis, and disrupt the thyroid axis
- In silico, in vitro, and in vivo evidence suggests TTR-binding may be an MIE of relevance for many environmental chemicals including some PFAS compounds

PA ited States vironmental Protection Transthyretin Adverse Outcome Pathways

• Two putative adverse outcome pathways have been developed for competitive binding to transthyretin leading to decreased serum thyroid hormone levels → How well can we extrapolate these pathways across species?

Sequence	Туре	Event ID	Title	Short name
1	MIE	957	Binding, Transthyretin in serum	Binding, Transthyretin in serum
2	KE	958	Displacement, Serum thyroxine (T4) from transthyretin	Displacement, Serum thyroxine (T4) from transthyretin
3	KE	959	Increased, Free serum thyroxine (T4)	Increased, Free serum thyroxine (T4)
4	KE	960	Increased, Uptake of thyroxine into tissue	Increased, Uptake of thyroxine into tissue
5	KE	961	Increased, Clearance of thyroxine from serum	Increased, Clearance of thyroxine from serum
6	KE	281	Thyroxine (T4) in serum, Decreased	T4 in serum, Decreased
7	KE	280	Thyroxine (T4) in neuronal tissue, Decreased	T4 in neuronal tissue, Decreased
8	KE	756	Hippocampal gene expression, Altered	Hippocampal gene expression, Altered
9	KE	757	Hippocampal anatomy, Altered	Hippocampal anatomy, Altered
10	KE	758	Hippocampal Physiology, Altered	Hippocampal Physiology Altered
11	AO	402	Cognitive Function, Decreased	Cognitive Function, Decreased

AOP 152: Interference with thyroid serum binding protein transthyretin and subsequent adverse human neurodevelopmental toxicity

Sequence	Тут	Event pe ID	Title	Short name
1	MIE	957	Binding, Transthyretin in serum	Binding, Transthyretin in serum
2	KE	1830	Displacement, Serum thyroxine (T4) from carrier protein	Displacement, Serum thyroxine (T4) from carrier protein
3	KE	E 959 Increased, Free serum thyroxine (T4)		Increased, Free serum thyroxine (T4)
4	KE	1158	Increased, Hepatic thyroid hormone uptake/transport	Increased, Hepatic thyroid hormone uptake/transport
5	KE	401	Increase, Biliary excretion TH glucuronide	Increase, Biliary excretion TH glucuronide
6	KE	281	Thyroxine (T4) in serum, Decreased	T4 in serum, Decreased
7	AO	1101	Altered, Amphibian metamorphosis	Altered, Amphibian metamorphosis

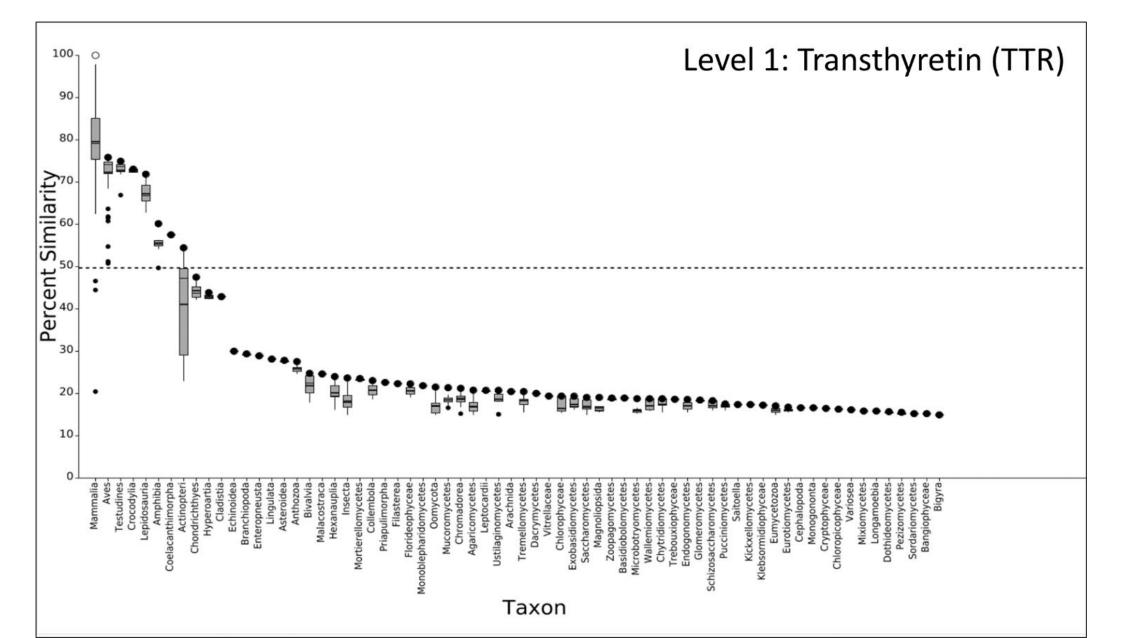
Goal: Assess transthyretin (TTR) as a protein target for environmental chemicals and define sensitive species/ populations

Transthyretin (TTR) & Cross Species Considerations

Thyroid Binding Globulin (TBG)	High affinity for TH
Transthyretin (TTR)	Moderate affinity for TH
Albumin	Low affinity for TH

•	In non-mammalian vertebrates, TTR is important
	only during developmental stages

- TTR is **less-important** in mammals due to the presence of other distribution proteins
- Structural differences exist between mammals and non-mammalian vertebrates resulting in different TH affinity

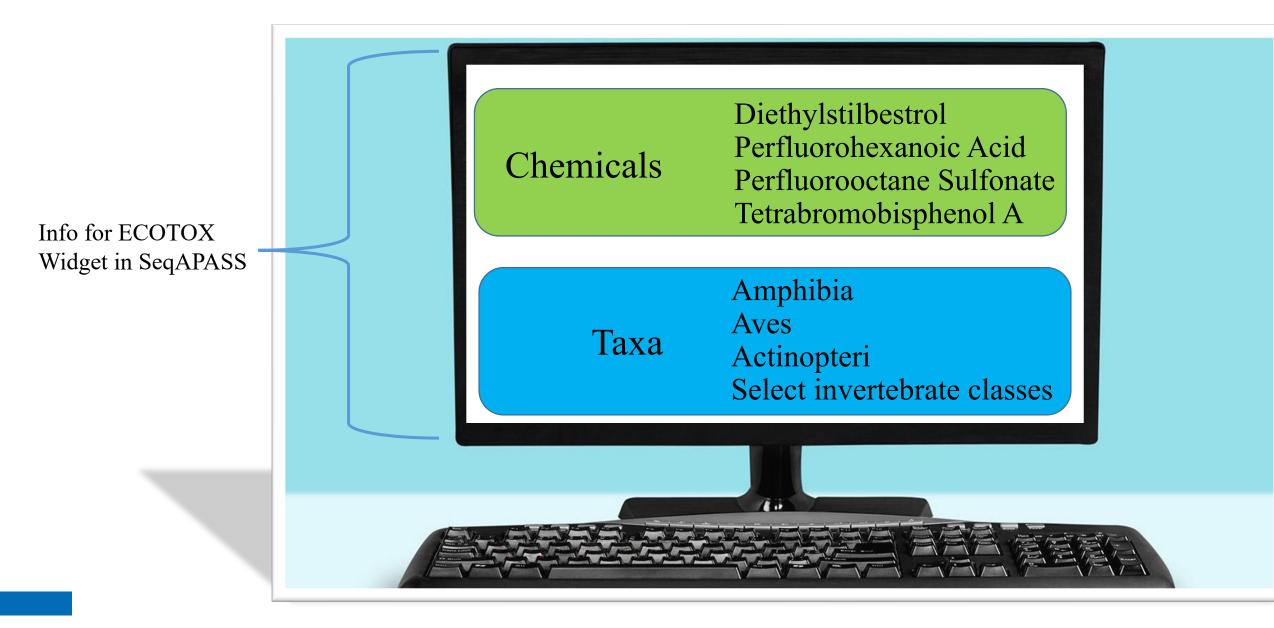

Early life-stages of **fish**, **amphibians**, and **reptiles** are the population potentially <u>most</u> <u>sensitive</u> to TTR-binding compounds

Таха	THDP Present Development	THDP Present Adult	TTR TH Affinity
Mammals*	TBG, TTR, Albumin	TBG, TTR, Albumin	T4 > T3
Fish	TTR, Albumin	Albumin	T3 > T4
Amphibian	TTR, Albumin	Albumin	T3 > T4
Reptile	TTR, Albumin	Albumin	T3 > T4
Bird	TTR, Albumin	Albumin	T3 > T4

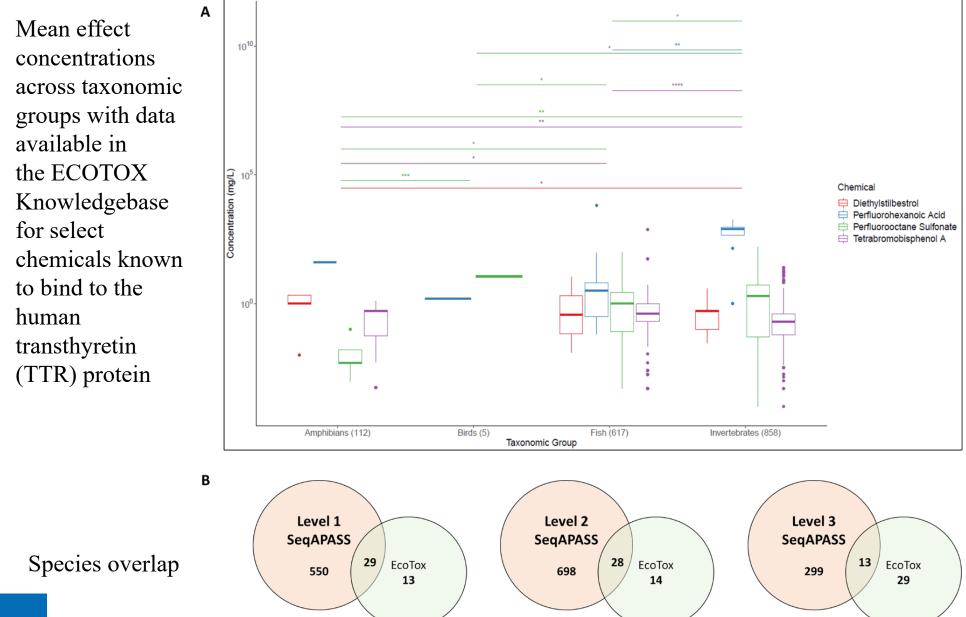
(Schreiber 2002, Rabah et al. 2019, McLean et al. 2017))

SeqAPASS Level 1

SeqAPASS Level 2



SeqAPASS Level 2


		Α	Taxonomic Group	Number of Species	Majority Similar Susceptibility?	Number Y	Number N			
			Mammals	135	Y	129	6			
			Birds	79	Y	79	0			
			Fish	53	Y	49	4			
В	Total Match		Reptiles	23	Y	23	0			
_	Partial Match Susceptible Yes		Amphibians	4	Y	3	1	_		
	Not a Match Susceptible No							_		
	Common Name	Similar S	Susceptibility	Amino Acid 1	Amino Acid 2	Amino	Acid 3	Amino Acid 4	Amino Acid 5	Amino Acid 6
	Human		Y	35K	128A	12	9A	130L	1378	139T
	Sperm whale		N	35K	128M	12	9A	130L	1378	139T
	Florida manatee		N	35K	128T	12	9A	130L	1378	139T
	Vaquita		N	35K	127M	12	8A	129L	1368	138T
	Yangtze finless porpoise		N	35K	127M	12	8A	129L	1368	138T
	Narwhal		N	35K	126M	12	7A	128L	1358	137T
	Platypus		N	37K	130A	13	1T	132L	1398	141T
	Pike-perch		N	39K	132A	133	3M	134L	141S	143T
	Blunt-snouted clingfish		N	32H	125P	12	6L	127L	134S	136Y
	Black rockcod		N	10H	103P	10	4L	105L	1128	114Y
	Turquoise killifish		N	11H	104P	10	5L	106L	1138	115Y
	Gabon caecilian		Ν	40K	133A	13	4L	135F	1421	144T
	Chinese bamboo-partridge		Ν	12K	105T	10	бТ	107V	114S	116T

Combine cross species knowledge

Combine cross species knowledge

	SeqAPASS L1			SeqAPASS L2			S	EcoTox*		
	Yes	No	Total	Yes	No	Total	Yes	No	Total	Total
Amphibian	7	0	7	8	0	8	3	1	4	8
Bird	111	0	111	113	0	113	79	0	79	1
Fish	111	5	116	115	7	122	49	4	53	16
Reptile	26	0	26	27	0	27	23	0	23	0

*Total represents data for unique species across DES, PFOS, PFHxS, and TBBPA

Acknowledgements

U.S. EPA, ORD

Marissa Jensen (University of Minnesota Dulut Sally Mayasich (University of Wisconsin)
Donovan Blatz (ORISE)
Monique Hazemi (ORISE)
Sara Vliet (US EPA)
Jon Doering (U of Lethbridge)
Colin Finnegan (Iowa State University)

Thomas Transue Cody Simmons Audrey Wilkinson Wilson Menendez

SeqAPASS v6.0 (Released Sept. 2021)

	t to Predict Across Species Susceptibility (SeqAPASS)	Logout
Request SegAPASS Run	SS Run View SeqAPASS Reports	
Request Sequerass run		
Choose Search T	By Species •	
Query Species Sea	sch	
Add Query Species		
Selected Query Spec		
	~	
	v.	
Query Protein Sea	ch l	
	Filter Protein	
	http://www.ncbi.nim.nih.gov/brotein	
Query Prote	ns 6월 多	
	4 20	
		*
Final Query Protein(s) for SeqAPASS F	nu	*
Demant Dun	Clave	
D		
The second second		The second second second
	POTO PIN MELLIN	anine + EESTA
	I will be I an	1-1-1-11

LaLone.Carlie@epa.gov https://seqapass.epa.gov/seqapass/

SeqAPASS Live Demo

Interoperability to aid users

