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EPA Context
• Need new approach methodologies (NAMs) to 

evaluate thousands of untested chemicals effectively

• NAMs are any technology, methodology, approach, 
or combination of methods that can provide 
information about chemical hazard and point of 
departure (POD) without using whole animals

• High-throughput transcriptomics (HTTr) is a flexible, 
portable and cost-efficient platform to 
comprehensively evaluate the potential biological 
pathways impacted by chemical exposure

• NAMs for hazard: identify putative molecular initiating 
events (MIEs)/targets or pathways 

• NAMs for POD: estimate in vitro POD associated with 
pathways/MIEs
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Thomas et al., 2018

“Tiered testing framework for hazard characterization”



Typical Transcriptomics Workflow
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How do we infer hazard and estimate 
POD based on transcriptomic profiles? 
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How is the risk of untested chemicals evaluated today?

• Generally, “read-across” techniques are 
used to fill data gaps by inference from a 
‘similar’ substance or substances (OECD, 
2017):

• Identify analogues using between structure / 
physico-chemical similarity

• Assign hazard and POD value based on 
analogue(s)

• However, many chemicals do not have 
substantial structural similarity to tested 
chemicals 

• Can we use transcriptomic similarity to infer 
hazard and POD? 

Generalized Read-across (GenRA)
Shah et al. 2016



Inferring hazard based on transcriptomic similarity

• “Connectivity mapping” (Lamb et al., 2006):
If two chemicals produce similar 
transcriptomic profiles, then they could act 
via a common mechanism

• Connectivity mapping has been used in 
toxicology to find putative targets (DeAbrew 
et al., 2016; Wang et al., 2016). 

• Many new approaches are being developed 
and there are a diverse set of tools

• Need to formalize connectivity analysis for 
putative target/pathway identification 
(hazard) and quantitative in vitro POD 
estimation

Lamb et al., 2006

Connectivity mapping

Query Reference Similarity metric Connections



Elements of Connectivity Mapping

Query Reference Similarity metric Connections

Find “Signature” of 
differential gene 

expression to 
define biological 
state associated 

with disease, 
chemical 

treatment, etc.

Database of 
differential gene 

expression profiles 
for reference 

chemicals with 
known biological 

activities

Pattern-matching 
algorithm to score 

the query signature 
and reference 

profiles 

A set of high-
scoring hits for the 
signature signifying 
connections with 

mechanisms, 
diseases or other 

phenotypes
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Shah et al. (in prep)



Generalizing Connectivity Mapping 
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signature and a profile
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• “Connectivity mapping” (Lamb et 
al., 2006)

• Query: directional signature (𝑫𝑫𝑫𝑫𝑛𝑛)
• Reference: transcriptomic profiles in 

Cmap v2 (𝒙𝒙)
• Similarity metric: Gene set enrichment 

Analysis (GSEA) (Subramanian et al. 
2005)

• Can generalize this as:

�s = 𝑆𝑆𝑆𝑆(𝑂𝑂𝑞𝑞 ,𝑂𝑂𝑟𝑟

s = similarity / connectivity score
SM= similarity metric
O = gene set “Object”

}𝑂𝑂 ∈ {𝒙𝒙,𝒙𝒙𝑛𝑛,𝐷𝐷𝑆𝑆𝑛𝑛, 𝑆𝑆𝑛𝑛

Shah et al. (in prep)



Type Method Similarity Metrics (SM)

Aggregation-
based 
enrichment 
scoring

eXtreme Sum (XS) ∑𝑖𝑖∈𝑄𝑄 |𝒙𝒙𝒓𝒓𝒓𝒓| − ∑𝑖𝑖∈𝑄𝑄′ |𝒙𝒙𝒓𝒓𝒓𝒓|

eXtreme Mean (XM) 1
𝑞𝑞
∑𝑖𝑖∈𝑄𝑄 |𝒙𝒙𝒓𝒓𝒓𝒓|−

1
𝑞𝑞′
∑𝑖𝑖∈𝑄𝑄′ |𝒙𝒙𝒓𝒓𝒓𝒓|

T-statistic (TT-p)
𝑡𝑡𝑡𝑡 = 𝒙𝒙𝑟𝑟[𝑄𝑄] −𝒙𝒙𝑟𝑟[𝑄𝑄𝑄]

𝜎𝜎𝑞𝑞2

𝑞𝑞 +
𝜎𝜎𝑞𝑞𝑞
2

𝑞𝑞𝑞

; 𝜎𝜎𝑞𝑞2 = 1
𝑞𝑞
∑𝑖𝑖𝜖𝜖𝜖𝜖(𝑥𝑥𝑟𝑟𝑟𝑟 − 𝒙𝒙𝑟𝑟[𝑄𝑄])2, 𝜎𝜎𝑞𝑞𝑞2 = 1

𝑞𝑞
∑𝑖𝑖𝜖𝜖𝜖𝜖𝜖(𝑥𝑥𝑟𝑟𝑟𝑟 − 𝒙𝒙𝑟𝑟[𝑄𝑄𝑄])2

Ranksum statistic (RS) 𝑟𝑟𝑟𝑟 = min 𝑞𝑞𝑞𝑞′ +
𝑞𝑞(𝑞𝑞 + 1)

2 −�𝑦𝑦𝑟𝑟 , 𝑞𝑞𝑞𝑞′ +
𝑞𝑞𝑞(𝑞𝑞𝑞+ 1)

2 −�𝑦𝑦𝑦𝑟𝑟 ; 𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥)

Kolmogoror-Smirnov  
statistic (GSEA)

ES = 𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑗𝑗≤𝑚𝑚 𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑖𝑖′ ; 𝑆𝑆𝑖𝑖 = �
𝑖𝑖∈R
𝑗𝑗≤𝑖𝑖

𝑥𝑥𝑗𝑗
𝑏𝑏

∑
𝑖𝑖∈R 𝑥𝑥𝑖𝑖

𝑏𝑏
, 𝑆𝑆′𝑖𝑖 = �

𝑖𝑖∈𝑅𝑅𝑅
𝑗𝑗≤𝑖𝑖

𝑥𝑥𝑗𝑗
𝑏𝑏

∑
𝑖𝑖∈R′ 𝑥𝑥𝑖𝑖

𝑏𝑏

Total enrichment 
score (TES) 𝑇𝑇𝑇𝑇𝑇𝑇 = 1 −

𝐸𝐸𝐸𝐸+ − 𝐸𝐸𝐸𝐸−
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Type Method Similarity Metrics (SM)

Vector-based 
similarity 
scoring

Extreme Pearson 
correlation (XCP)

𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙q,𝒙𝒙𝑟𝑟)
𝜎𝜎𝑞𝑞𝜎𝜎𝑟𝑟

Extreme Spearman 
Correlation (XCS)

𝑐𝑐𝑐𝑐𝑐𝑐(𝒚𝒚q,𝒚𝒚𝑟𝑟)
𝜎𝜎𝑦𝑦𝑞𝑞𝜎𝜎𝑦𝑦𝑟𝑟

,𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝒙𝒙)

Extreme Cosine (XC)
𝒙𝒙𝒒𝒒 ⋅ 𝒙𝒙𝒓𝒓

|𝒙𝒙𝒒𝒒||𝒙𝒙𝒓𝒓|

Jaccard index (JI) 𝐽𝐽(𝑄𝑄,𝑅𝑅) =
𝑄𝑄 ∩ 𝑅𝑅
𝑄𝑄 ∪ 𝑅𝑅

Signed Jaccard (SJI) 𝐽𝐽 𝑄𝑄+,𝑅𝑅+ + 𝐽𝐽 𝑄𝑄−,𝑅𝑅− − 𝐽𝐽 𝑄𝑄+,𝑅𝑅− − 𝐽𝐽 𝑄𝑄−,𝑅𝑅+

2

Szymkiewicz–Simpson 
index (SI)

𝑆𝑆(𝑄𝑄,𝑅𝑅) =
𝑄𝑄 ∩ 𝑅𝑅

min(𝑛𝑛𝑞𝑞,𝑛𝑛𝑟𝑟)

Signed Szymkiewicz–
Simpson index (SSI)

𝑆𝑆 𝑄𝑄+,𝑅𝑅+ + 𝑆𝑆 𝑄𝑄−,𝑅𝑅− − 𝑆𝑆 𝑄𝑄+,𝑅𝑅− − 𝑆𝑆 𝑄𝑄−,𝑅𝑅+

2

Shah et al. (in prep)

Similarity metrics beyond GSEA …

Aggregation-based metrics Vector-based metrics



Example: Troglitazone Signature Connections in CMap

Data set
• CMap v2 (Lamb 2017) 
• 1,309 chemicals (6 h) and 3 cells: MCF7, PC3 and 

HL60 
• Transcriptomics: Affymetrix U133A GeneChip

(22,215 transcripts associated with 13,609 genes). 
• Differential expression (L2FC) by comparison with 

DMSO controls 
• 6,100 differential expression profiles (𝒙𝒙)

Example
• Query: troglitazone 10μM (PC3 cells) 

top 50-up and 50-dn genes
• Reference: 6,100 profiles {𝒙𝒙1,𝒙𝒙2, … . }
• Best hits: Thiazoladinediones and 

PPAR-activators
• Multiple similarity metrics – similar 

results

Signed 
Szymkiewicz–

Simpson index (SSI)
T-statistic (TT-p) GSEA



Troglitazone Signature Connections in CMap

Data set (Query and Reference)
• CMap v2 (Lamb 2017) 
• 1,309 chemicals (6 h) and 3 cells: MCF7, PC3 and 

HL60 
• Transcriptomics: Affymetrix U133A GeneChip

(22,215 transcripts associated with 13,609 genes). 
• Differential expression (L2FC) by comparison with 

DMSO controls 
• 6,100 differential expression profiles (𝒙𝒙)

Example
• Query: troglitazone 10μM (PC3 cells)
• Reference: 6,100 profiles {𝒙𝒙1,𝒙𝒙2, … . }
• Best hits: Thiazoladinediones and 

PPAR-activators
• Multiple similarity metrics – similar 

results

Signed 
Szymkiewicz–

Simpson index (SSI)
T-statistic (TT-p) GSEA
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Signature = S

genes

Other gene sets: canonical pathways

S

Signature = S

genes
interactions

MSigDB pathways and signatures Reactome/KEGG/etc. fancy network

Shah et al. (in prep)

MSigDB: Molecular Signatures Database
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Estrogen Signature Connections in MSigDB

Jaccard
Index (JI)T-statistic (TT-p) GSEAData set

• Reference: MSigDB v7 (26,860 signatures)
• Query: CMap v2

Example
• Query: Estrogen 14.6 μM (MCF7 cells)
• Reference: 2,253 canonical and 

hallmark pathways
• Best hits: Estrogen responses
• Multiple similarity metrics – similar 

results
• Difference signature sizes impact 

scores and depend on metric used



Signature similarity scores to PODs: Troglitazone

• Data: HepaRG cells treated with 1,366 chemicals 0.01-100μM
• Query: Troglitazone profiles replicated across 29 batches 
• Reference: CMap v2 Affymetrix data
• Connectivity analysis using multiple signatures and metrics
• Score signatures against random profiles to estimate background 

• Standardize similarity scores using background distribution (Z)
• Concentration-response modeling using tcplFit2  (cnst, hill, gnls, poly1, poly2, pow, 

exp2, exp3, exp4, exp5)
• Estimate benchmark concentration (BMC) using benchmark response (BMR) of Z=1

Concentration [μM] BMC [μM]
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Challenges & Future directions
• Chemicals cause toxicity via complex pathways that are poorly defined. 

Two main conceptual approaches to map adverse outcome pathways 
(AOPs) using transcriptomics:-

• Specific receptor-mediated mechanisms (e.g. nuclear receptor-mediated 
developmental or reproductive effects) 

• Non-specific adaptive stress response pathways (e.g. oxidative stress, 
unfolded protein response, etc.)

• We are developing transcriptomic signatures of receptor-
mediated and non-specific adaptive stress response pathways

• Hypothesis: Increasing the level of chemical(s) beyond “tipping point” can 
overwhelm the adaptive stress responses and result in adverse outcomes

• HepG2 cells using high-content imaging (HCI) to measure time-course cell phenotypic data (Shah et al. 
2016)

• Developing rat neuronal networks and time-course microelectrode array data on electrophysiological 
activity (Franks et al. 2018)

• Induced pluripotent stem cells and time-course transcriptomic data during endodermal differentiation 
linked to ATRA signaling and toxicity (Saili et al. 2020)

• We are also developing NAMs to estimate tipping points from 
transcriptomic and other data streams using systems modeling
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Summary
1. High-throughput transcriptomics is promising for NAM development

We are using TempO-Seq technology (targeted RNA-Seq) to evaluate thousands of 
chemicals in multiple cell lines and have developed a high-throughput pipeline to 
process and analyze transcriptomic concentration-response data. 

2. Feasible to identify hazard and estimate POD using gene signature “similarity”

We are systematically evaluating gene signature-based connectivity mapping and other 
approaches for identifying putative targets, AOPs and in vitro POD values. Gene 
signature-based approaches are more sensitive than single gene-based techniques. 

3. Connectivity mapping, read-across and risk assessment

Transcriptomic nearest-neighbor techniques are conceptually like expert read-across 
approaches, which are widely used to fill data gaps for untested chemicals. Could be 
easier “sell” than more sophisticated network inference and AI/ML/DL.  

4. Future directions

Systems biology of adaptive stress response pathways using transcriptomics to 
investigate the molecular basis of cellular resilience and tipping points; streamline the 
development of NAMs for evaluating untested chemicals based on adaptive stress 
responses.
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