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• June 2016: Frank R. Lautenberg Chemical Safety for the 21st Century Act enacted to 
advance chemical safety evaluations with novel methods that reduce testing on 
vertebrate animals and are translatable to vulnerable populations / lifestages. 

• September 2019: directive issued by USEPA Administrator Wheeler 
set a vision to reduce mammalian study requests 30% by the 
year 2025 and eliminate them by 2035.

• June 2020: USEPA work plan to accelerate scientifically valid New 
Approach Methods (NAMs) for assessing toxicity of large numbers of 
chemicals with less reliance on animal testing.

• Today’s lecture: focuses on the predictive power of computational models and computer 
simulation for human-relevant pathways underlying developmental toxicity.

Shifting toxicity testing to in vitro data and in silico models 
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Can the computer eliminate the lab animal? 

“… in silico modeling approaches have 
growing potential to help reduce the 

number of animals needed to test 
chemical toxicity.”

Nature (Lab Animal) 48: 40-42, February 2019

• machine-learning (A.I.): capitalizes on 
computing power and vast amounts 
of data in the public domain.

• research challenge: improve accuracy 
and trust in toxicological predictions 
made by computers.



Knudsen and Kavlock 2008, based on MW Covert (2006)

Why computational models are needed ...
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Statistics defines the parts … Bioinformatics connects them … Computer simulation executes.
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Computational Intelligence (C.I.)

• Deep-learning is the dominant AI technique today for mining 
data-driven correlations in predictive toxicology

See for example:
Luechtefeld et al. (2018) Machine learning of toxicological big data 
enables read-across structure activity relationships (RASAR) 
outperforming animal test reproducibility. Toxicol Sci 165: 198-212.

Ciallella and Zhu (2019) Advancing computational toxicology in the 
big data era by artificial intelligence: data-driven and mechanism-
driven modeling for chemical toxicity. Chem Res Toxicol 32: 536-547.

• However, to get at causality we’ll want to go beyond the data, 
utilizing novel C.I. approaches that can handle randomly 
determined (stochastic) behaviors of cells in a complex setting.
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Cellular Agent-Based Models (ABMs)

SOURCE: Andersen, Newman and Otter (2006) Am. 
Assoc. Artif. Intel. 6

• nature-inspired agents (cells) and rules (behaviors) set 
into motion as a self-organizing system (virtual tissue)

• enough information is coded into the model’s blueprint 
to execute a complex morphogenetic series of events

• soft-computing uses ‘fuzzy logic’ to fill-in for missing 
information (inexact rules, incomplete knowledge)

• readout is a phenotype that can unravel precisely 
where, when and how a particular change emerged

Example: anatomical homeostasis in a self-
regulating ‘virtual embryo’



Biological blueprints are complex: cells, signals, responses, biomechanics, …
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Biological network driving embryonic limb-bud outgrowth

Mapped in CellDesigner [www.celldesigner.org]



Data-driven mathematical model: embryonic limb-bud outgrowth

SOURCE: Uzkudun, Marcon and Sharpe (2015) Mol Systems Biol

Patterns of retinoic acid (RA) and fibroblast growth factor (FGF4, FGF8) signaling gradients 
reverse-engineered from gene expression data (in situ hybridization)

EPA’s ‘Virtual Embryo’ project is taking this philosophy a step further, aiming to simulate 
how chemicals might affect development, and what exposure thresholds pose a threat. 
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cell field FGF8 FGF4 FGF10

SHH GREM-1 BMP4 BMP7

Virtual Embryo: limb-bud outgrowth module

Coded in Python, simulated in the CompuCell3D modeling environment [www.compucell3d.org]

Patterns of gene expression forward-engineered from in situ hybridization images (literature)
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Growth trajectories (n=5 simulations)

Hacking the control network
(cybermorphs)
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In silico toxicodynamics: disruption of RA signaling
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Accutane
(13-cis Retinoic Acid)

Retinoic Acid (RA)
(morphogenetic signal)



vtls.epa.gov/

12Virtual Embryo toolbox will encompass a range of developing systems

Take home message: in silico toxicodynamics
Computational models with sufficient biological intelligence can quantitatively simulate 
multiscale dynamics of biomolecular perturbation(s), predicting an in vivo phenotype.
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Opening the ‘black-box’ with Computational Intelligence

• Translational: what could a comprehensive suite of human-relevant synthetic (in 
silico) models bring to the future of toxicity testing? 

• Investigational: how smart must these models be to support decision-making 
with reduced animal testing (3Rs)?

• Operational: what best practices are needed to implement a virtual 
toxicodynamics platform into integrated decision frameworks?
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Communication: given successful proof-of-concept, what factors would 
make stakeholders more (or less) comfortable using these types of 
computer models versus a whole organism?


