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Shifting toxicity testing to in vitro data and in silico models

* June 2016: Frank R. Lautenberg Chemical Safety for the 21st Century Act enacted to
advance chemical safety evaluations with novel methods that reduce testing on
vertebrate animals and are translatable to vulnerable populations / lifestages.

 September 2019: directive issued by USEPA Administrator Wheeler
set a vision to reduce mammalian study requests 30% by the neJ R
year 2025 and eliminate them by 2035. Meiicls NERE Flan

* June 2020: USEPA work plan to accelerate scientifically valid New
Approach Methods (NAMs) for assessing toxicity of large numbers of
chemicals with less reliance on animal testing.

Today’s lecture: focuses on the predictive power of computational models and computer
simulation for human-relevant pathways underlying developmental toxicity. 2



Can the computer eliminate the lab animal?

‘ technology feature

" . ofe .
Toxicology testing steps towards computers .. in silico modeling approaches have
Can the computer eliminate the lab animal? As computational methods become more advanced and data more grOWIng potent’al to help reduce the

freely available, in silico modeling approaches have growing potential to help reduce the number of animals needed

fotest chemical tocty. number of animals needed to test
JimKling . . . ”
chemical toxicity.

he 2016 overhaul of the United States
Toxic Substances Control Act (TSCA),

originally passed in 1976, was meant

A it i » machine-learning (A.l.): capitalizes on
chemicals. But in the short term, at least,

Scenct reported a surge i ol s computing power and vast amounts
of data in the public domain.

Science reported’ a surge in animal testing,
from 7,000 animals used in a few dozen
tests in 2016, to more than 300 conducted
a year later that involved about 75,000 rats,
rabbits and other animals.

The specific cause of the jump in animal
testing is unknown, but it is ironic given that
the law also required the Environmental
Protection Agency (EPA) to “reduce, refine,
or replace” animals in toxicological testing.
The trend is alarming to animal welfare
and industry groups, and frustrating to
researchers working on alternatives. One
such alternative avenue that has made strides
in recent years is to move in vivo toxicology

* research challenge: improve accuracy
and trust in toxicological predictions

In vivo vs. in silico: Computer models are in the works that might help shift the balance away from animal
use in toxicity testing. Credit: E. Dewalt/Springer Nature

studies in silico: a number of computational m a d e by CO m p u te rS .

methnde have heen develaned that conld he

Nature (Lab Animal) 48: 40-42, February 2019 3



Why computational models are needed ...

Statistics defines the parts ... Bioinformatics connects them ... Computer simulation executes.
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Computational Intelligence (C.1.)

* Deep-learning is the dominant Al technique today for mining
data-driven correlations in predictive toxicology

evolutionary
computing

See for example:

Luechtefeld et al. (2018) Machine learning of toxicological big data
enables read-across structure activity relationships (RASAR)
outperforming animal test reproducibility. Toxicol Sci 165: 198-212.

neural
network

Computational
Intelligence

Ciallella and Zhu (2019) Advancing computational toxicology in the
big data era by artificial intelligence: data-driven and mechanism-
driven modeling for chemical toxicity. Chem Res Toxicol 32: 536-547.

learning
theory

swarm
intelligence

probabilistic

* However, to get at causality we’ll want to go beyond the data, methods

utilizing novel C.l. approaches that can handle randomly
determined (stochastic) behaviors of cells in a complex setting.



Cellular Agent-Based Models (ABMs)

Example: anatomical homeostasis in a self-
regulating ‘virtual embryo’

* nature-inspired agents (cells) and rules (behaviors) set
into motion as a self-organizing system (virtual tissue)

* enough information is coded into the model’s blueprint
to execute a complex morphogenetic series of events

e soft-computing uses ‘fuzzy logic’ to fill-in for missing
information (inexact rules, incomplete knowledge)

* readout is a phenotype that can unravel precisely

Step: 598

where, when and how a particular change emerged Spheres: 273

Cells: 21 S
Copyright (c) 2003-2007, Crowley Davis Research, Inc. All Rights Reserved.

SOURCE: Andersen, Newman and Otter (2006) Am.
Assoc. Artif. Intel. 6



Biological blueprints are complex: cells, signals, responses, biomechanics, ...

Biological network driving embryonic limb-bud outgrowth
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Data-driven mathematical model: embryonic limb-bud outgrowth

Patterns of retinoic acid (RA) and fibroblast growth factor (FGF4, FGF8) signaling gradients
reverse-engineered from gene expression data (in situ hybridization)
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SOURCE: Uzkudun, Marcon and Sharpe (2015) Mol Systems Biol

EPA’s ‘Virtual Embryo’ project is taking this philosophy a step further, aiming to simulate
how chemicals might affect development, and what exposure thresholds pose a threat.




Virtual Embryo: /imb-bud outgrowth module

Patterns of gene expression forward-engineered from in situ hybridization images (literature)

cell field

-EMOrYo.

Coded in Python, simulated in the CompuCell3D modeling environment [www.compucell3d.org] Ei
e




’ P b b Hacking the control network
(cybermorphs)

Growth trajectories (n=5 simulations)
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In silico toxicodynamics: disruption of RA signaling
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Take home message: in silico toxicodynamics

Computational models with sufficient biological intelligence can quantitatively simulate
multiscale dynamics of biomolecular perturbation(s), predicting an in vivo phenotype.
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Virtual Embryo toolbox will encompass a range of developing systems
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Opening the ‘black-box’ with Computational Intelligence

- Translational: what could a comprehensive suite of human-relevant synthetic (in
silico) models bring to the future of toxicity testing?

- Investigational: how smart must these models be to support decision-making
with reduced animal testing (3Rs)?

- Operational: what best practices are needed to implement a virtual
toxicodynamics platform into integrated decision frameworks?

Communication: given successful proof-of-concept, what factors would
make stakeholders more (or less) comfortable using these types of
computer models versus a whole organism?
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