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AOP Development; Aromatase Inhibition and Androgen Receptor Agonism Lead to 
Male Biased Sex Ratio Via Impacts on Gonad Differentiation

Methods
I. Bottom-up AOP development
• Starting with the Molecular Initiating Event (MIE) 
• AOP development to understand apical hazards
II. A literature search was conducted on Google 
Scholar and PubMed.
• ‘aromatase inhibition’, ‘male biased sex ratios’ and 

‘androgen sex reversal’ in combination with ‘fish’ 
were the main keywords used. 

• The purpose was to develop two AOPs linking early
developmental endocrine perturbations to
masculinization during later life.

• Identify critical data or evidence gaps in relation to
these AOPs.

• Endocrine disrupting chemicals in the environment are a continuing
regulatory concern. Impacts on sexual differentiation are among the
potential adverse effects of concern.

• Adverse Outcome Pathways (AOPs) provide causal associations
across different biological levels of organization linking molecular
initiating events (MIEs) to potential apical effects meaningful to
ecological risk assessment.

• Previous AOP development related to effects of endocrine
disruptors on fish have largely focused on effects in adult life stages.
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• Biological plausibility suggest that if the 
conditions that favored a male producing 
phenotype (in this case, the aromatase 
inhibitor) overlap with the critical period of 
sex differentiation in a given population, it 
is reasonable that more male offspring will 
be produced. Therefore, persistence of such 
conditions for repeated or prolong periods 
of times within the habitat of given species, 
can result in a male-biased population.

• Aromatase (cyp19a1a) is a cytochrome 
P450 enzyme that is rate limiting for 
estrogen synthesis. It converts C19 
androgens to C18 estrogens in brain and 
gonadal tissues of vertebrates. Therefore, it 
is highly plausible that local estrogen 
production in the bipotential gonad would 
be reduced if aromatase is inhibited.

• Additionally, it has been shown that in 
cyp19a1a-deficient and double knockout 
fish, the levels of estradiol were 
significantly lower than that in wild-type 
and cyp19a1b-deficient fish.9

• Mutation of the fish androgen 
receptor  gene (aruab105/105) 
resulted in development of  
ovaries and female phenotypic 
secondary sexual 
characteristics.12,13

• Studies have shown that cyp19a1b 
(brain) mutant lines of develop as 
females while cypa19a (gonad) 
mutants develop as males.1-3

• Estradiol reduction in the 
undifferentiated gonad at the 
onset of sexual differentiation 
promotes testis differentiation 
in a concentration dependent 
manner. 

• In a stop (by cyp19a1-
knockout) and recovery 
(through compensation) 
experiment, E2 can rescue the 
female phenotype altered due 
to the gonadal aromatase 
gene knockout.1,9

• In several studies, 
exposure of  with 
zebrafish to different 
concentrations of 17β-
trenbolone and 
dihydrotestosterone lead 
to increased number of 
males in a dose-
dependent way. 14-17

Domain of Applicability
Life stage: Juvenile stage prior to- or during gonadal differentiation
Sex: Sexually undifferentiated
Taxonomic:
• This AOP is focused on Class Osteichthyes particularly on species 

with environmental sex differentiation (ESD)
• Because aromatase is well conserved among vertebrates and 

the androgen receptor genes appear to be specific to jawed 
vertebrates (Gnathostomata) it is plausible that this AOP can also be 
applicable to certain groups of reptiles and amphibians with ESD. 
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• Multidimensional, density-dependent matrix models have 
shown a concentration-dependent reduction in projected 
population size based on the ratio of male to female.10, 11

• Exposure to different 
concentrations of 
aromatase inhibitors 
(Exemestane, 
Fadrozole, Prochloraz) 
lead to increased 
number of males in a 
dose-dependent way 
in multiple fish 
species.4-8

III. Additional filtering criteria for research articles was  dependent 
on the  on the research method and measurements taken. 
• Histological examinations of gonads for primary sex 

characteristics and sex ratio were considered as relevant.
IV. Evidence was gathered in a concordance table 
• Chemical and doses, exposure period in life stage and relevant 

effect to each key event relationship was the information 
included.
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• Two AOPs were developed in the AOP Wiki. They provide strong
support for the connection between aromatase inhibition and
androgen receptor agonism and effects on sexual differentiation
and consequent sex ratios in species with ESD.

• Intermediate key events along this pathway provide potential
end points for tiered testing strategies in general endocrine
disruptor screening.

• It is likely that the current network of AOPs could be expanded to
include climate change effects such as temperature induced
masculinization via impacts on aromatase for species with
temperature-dependent sex determination.

AOP Wiki
To access the full AOP development visit:
• https://aopwiki.org/aops/346
• https://aopwiki.org/aops/376

Figure from [15]
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