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Disclaimer

The views expressed in this presentation are those of the authors and 
do not necessarily represent the views or policies of the US EPA. 
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A Current Challenge in Chemical Hazard Identification:
There are approximately 883,000 chemicals registered on the CompTox Chemicals 
Dashboard.  Many chemicals have limited associated chemical safety information. 

Solution:
New Approach Methodologies (NAMs) such as High-Throughput Transcriptomics (HTTr) 
combined with machine learning methods can help identify Molecular Initiating Events 
(MIEs) induced by chemical treatment for hundreds / thousands of chemicals at a time. 

Project Context
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What are Molecular Initiating Events?

Figure 4, Allen et al. 2014

• Molecular Initiating Events (MIEs) are a concept in the Adverse Outcome 
Pathway (AOP) paradigm

• MIEs are the initial molecular interactions between a chemical and a 
biological system that trigger downstream key events, culminating in an 
adverse outcome
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Predicting MIEs from Gene Expression Data

• Integrate publicly available gene expression 
data with a database that links reference 
chemicals to molecular targets

• Train binary classifiers to predict activation of 
MIEs by chemical treatment

• Train a separate classifier for each MIE using 
machine learning

LINCS
Gene 

Expression

RefChemDB
Chemical 

Annotations

MIE-1 MIE-2 MIE-3

~ 20k compounds
~ 600k profiles

~ 339k chemical-
target annotations
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Data Processing and Classifier 
Training Workflow
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Example of Classifier Training Data Set
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MIE Classifier Training Parameters
In MCF7 data, 51 MIEs with sufficient training data were 
identified
• Valid MIEs must be linked to at least 5 Chemicals
• Valid MIEs must be linked to at least 50 Gene 

Expression Profiles

Model optimization variables:
• Training Feature Type

1. Landmark Genes
2. All Genes 
3. Pathway Scores

• Classifiers trained with 6 algorithms
1. Support Vector Machine Linear
2. Support Vector Machine Polynomial
3. Support Vector Machine Radial
4. K-Nearest Neighbor
5. Multilayer Perceptron
6. Naïve Bayes 
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Comparison of Training Feature Types

• Classifiers trained on 
landmark genes perform 
better than classifiers 
trained on pathway scores 
or landmark + inferred 
genes (all genes) 

All genes
978 landmark genes + 
11,350 inferred genes

Pathway scores
~900 Pathway scores

Landmark genes
978 genes measured in 
L1000 assay
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Comparison of Classifier Algorithm Performance

Support Vector Machine algorithm with a polynomial 
kernel produced the highest internal accuracy

Comparison of internal and Holdout accuracies revealed 
that SVM_P based classifiers were likely overfit
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Estrogen Receptor Inhibition
ESR-1/2 (-)

GW-9508 lapatinibtorcetrapib
MIE-Active Training Set MIE-Inactive Training Set

Collection of MIE-associated chemicals and their profiles Collection of profiles selected at random from a large 
set of chemicals that are not associated with the MIE

sildenafil NVP-TAE684

500

Empirical Significance Analysis

Train multiple “null” 
classifiers by permuting 
chemical-MIE associations

Fulvestrant TamoxifenRaloxifene Toremifene Mifepristone
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500 “Null” internal accuracies 

“TRUE” Model

• Calculate percentile rank of “true” un-permuted model accuracy relative to accuracy scores of the 
500 permuted models

“Null” Models

“TRUE” internal accuracy 

Empirical Significance Analysis
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MIE Name Classification 
Algorithm

Internal 
Accuracy

Holdout 
Accuracy

MIE Active 
Profiles

MIE Active 
Chemicals

Mean Null 
Accuracy

Empirical 
Pvalue

Exemplar Chemical Exemplar 
Percent Rank

ADRA2A (+) SVM_R 0.72 0.86 58 7 0.60 0.03 Epinephrine 0.76
ALOX5 (-) NB 0.73 0.55 51 5 0.61 0.01 MK 886 0.63

AR (+) NB 0.71 0.60 52 8 0.61 0.03 17-Methyltestosterone 0.12
DRD2 (-) SVM_R 0.68 0.54 118 14 0.58 0.03 Haloperidol 0.74

ESR-1/2 (-) MLP 0.89 0.92 68 5 0.69 0.00 Tamoxifen 1.00
ESR-1/2 (+) SVM_L 0.85 0.79 145 12 0.64 0.00 17beta-Estradiol 0.96

FLT1/KDR (-) MLP 0.75 0.69 122 10 0.66 0.02 Erlotinib 0.90
HDAC (-) SVM_L 0.82 0.78 174 10 0.67 0.00 MS-275 0.97

HMGCR (-) MLP 0.79 0.85 50 4 0.66 0.03 Mevastatin 0.92
HRH1 (-) MLP 0.71 0.61 110 14 0.61 0.01 Astemizole 0.24
JAK2 (-) SVM_L 0.88 0.85 54 5 0.71 0.01 NA NA

KCNH2 (-) SVM_R 0.66 0.64 369 34 0.58 0.00 Haloperidol 0.70
MAPK14 (-) SVM_L 0.86 0.93 78 5 0.73 0.03 NA NA

MET (-) SVM_L 0.83 0.70 114 7 0.70 0.01 Cabozantinib 0.54
MTOR/PIK3 (-) SVM_R 0.90 0.88 204 12 0.70 0.00 Everolimus 1.00

NR3C1 (+) SVM_R 0.73 0.68 100 10 0.60 0.01 Clocortolone pivalate 0.97
PTGS-1/2 (-) SVM_R 0.65 0.65 247 28 0.58 0.00 Flurbiprofen 0.59
SLC22A6 (-) KNN 0.70 0.64 55 6 0.58 0.02 Methotrexate 0.26
TOP2A (-) SVM_L 0.88 0.87 75 7 0.67 0.00 Doxorubicin 1.00

TUB (-) SVM_L 0.94 0.90 104 8 0.59 0.00 Vinblastine 1.00
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• High performance classifiers generated high 
ranking predictions for their respective 
training-excluded exemplar reference 
chemicals

• A subset of exemplar chemicals returned high 
ranking predictions for MIEs for which they are 
not annotated (Methotrexate and ESR-1/2 (-), 
MTOR/PI3K (-) )

• Likely the result of molecular cross-talk 
and the convergence of signaling 
pathways shared between MIEs

Exemplar Chemical Predictions for 
9 High Performance Classifiers



How does MIE Classifier 
Performance Vary Across 

Cell Lines?

• Trained a second set of MIE classifiers on PC3-derived 
data (prostate cancer cell line)

• PC3 cell line has the second most gene 
expression profiles in LINCS L1000 CMAP 
dataset

• PC3 classifiers were trained for 46 of the 51 MIEs 
modeled in the MCF7 cell line
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Comparison of Internal Accuracies for MCF7 
and PC3-trained Classifiers

• Modest correlation between 
internal accuracies of MCF7 and 
PC3 trained classifiers

• Some variation in internal accuracy 
likely attributable to differences in 
baseline expression of MIE gene 
targets

• Gene expression values 
derived from human protein 
atlas 

• MIEs may be more readily 
triggered (and better modeled) 
in cell types where the 
associated target protein is 
highly expressed
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MCF7 Biased 
Expression

PC3 Biased 
Expression



Conclusions

• Trained predictive models for 51 distinct MIEs by integrating gene expression data 
with chemical-target labels 

• Identified 9 MIEs modeled with high performance classifiers

• Explored factors that affected model accuracy
• Feature type 
• Classification algorithm

• Trained classifiers using profiles from different cell types (MCF7 and PC3)
• Identified several MIEs that are well-modeled in both cell types

• A subset of classifiers showed a disparity in performance as a function of cell 
type and shed light on MIEs that may be better screened in one cell type over 
another
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Signature 
Index

Chemical 
Treatment

MIE 1 
Prediction

MIE 2 
Prediction

MIE 3 
Prediction

1 Haloperidol 0.05 0.77 0.42

2 Haloperidol 0.25 0.62 0.23

3 Haloperidol 0.13 0.55 0.26

4 Everolimus 0.88 0.33 0.42

5 Everolimus 0.74 0.18 0.23

6 Everolimus 0.90 0.44 0.32

7 Dopamine 0.23 0.43 0.98

8 Dopamine 0.27 0.21 0.76

… 42,049 … … … …

Chemical 
Treatment

MIE 1 
Prediction

MIE 2 
Prediction

MIE 3 
Prediction

Haloperidol 0.13 0.62 0.26

Everolimus 0.74 0.33 0.32

Dopamine 0.25 0.32 0.87

… (11,712) … … …

Chemical 
Treatment

MIE 1 
Prediction

MIE 2 
Prediction

MIE 3 
Prediction

Haloperidol 6,239/11,712 963/11,712 9,842/11,712

Everolimus 354/11,712 9,426/11,712 9,436/11,712

Dopamine 1453/11,712 9,448/11,712 173/11,712

… (11,712) … … …

Distill per-signature 
predictions into per-
chemical predictions by 
taking the median

Calculate the MIE-wise 
rank for each chemical

Chemical 
Treatment

MIE 1 
Prediction

MIE 2 
Prediction

MIE 3 
Prediction

Haloperidol 0.47 0.92 0.16

Everolimus 0.97 0.20 0.19

Dopamine 0.88 0.19 0.99

… (11,712) … … …

Calculate the percentile 
rank for each chemical
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