

Species Differences in Nuclear Receptor Activation and Hepatic Thyroid Hormone Metabolism

Vicki Richardson, PhD US Environmental Protection Agency

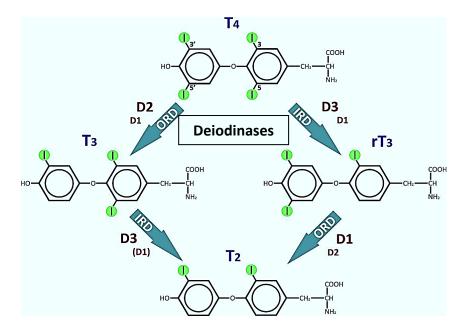
The content of this presentation does not necessarily reflect the views or the policies of the US EPA.

Why the Concern Over Thyroid Hormone Disrupting Chemicals?

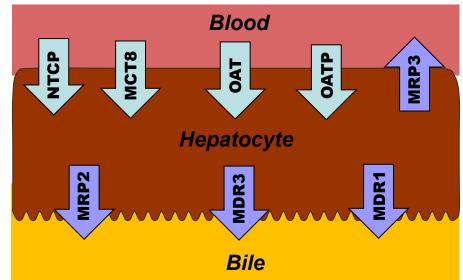
Thyroid hormones play a critical role in the developing nervous system.

Lack of THs result in adverse neurological development (sensory, motor, cognitive)

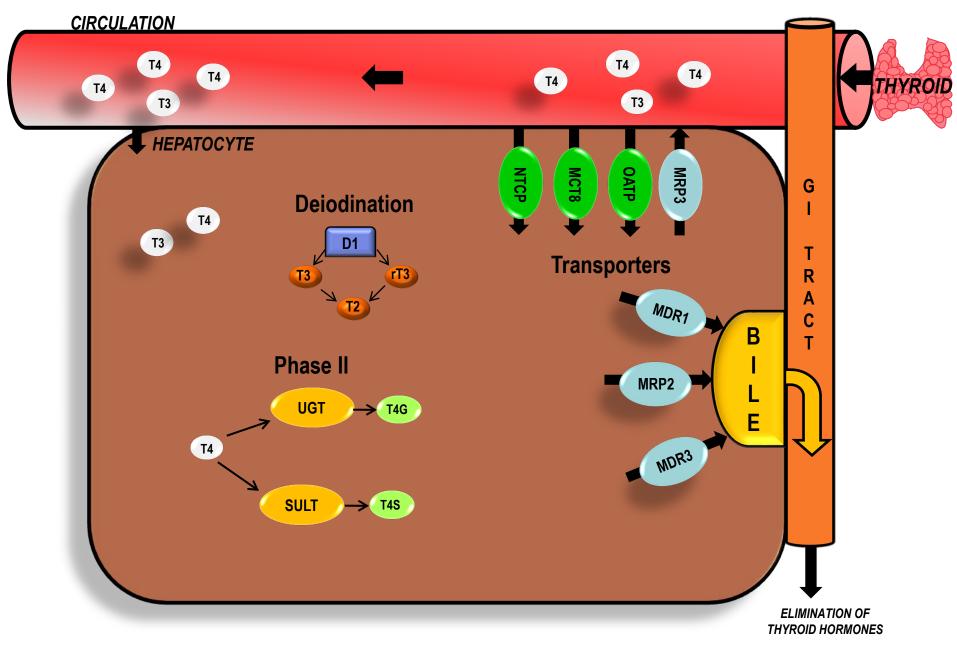
- Amphibians, birds, fish, and mammals
- Significant evolutionary conservation of thyroid hormones and neurodevelopment

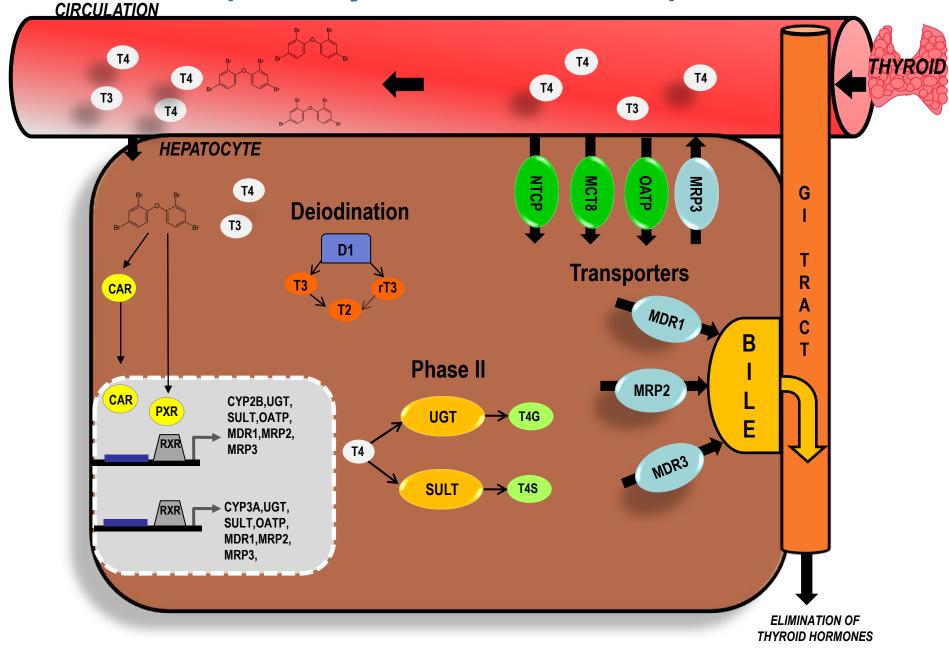

Major Pathways of Thyroid Hormone Disruption

- Thyroid hormone synthesis
 - Iodide uptake
 - Thyroid Peroxidase
- Serum binding proteins
 - Transthyretin (TTR)
 - Thyroid Binding Globulin (TBG)
- Hepatic Metabolism
 - Nuclear receptor activation
 - Phase II enzyme induction
 - Transport

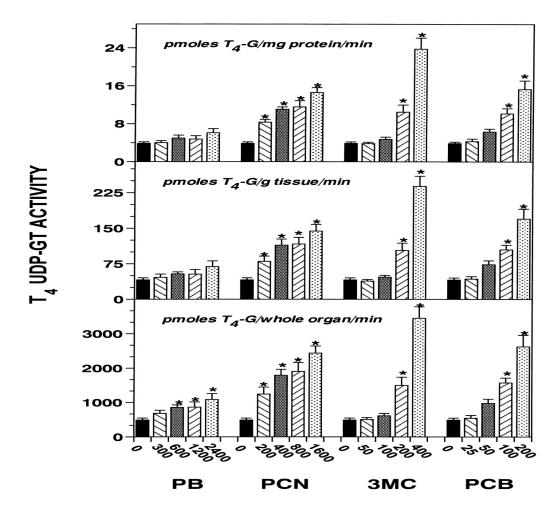

The Liver: A Site For Thyroid Hormone Metabolism

Major site of xenobiotic and thyroid hormone metabolism


- Glucuronidation
- Sulfation
- Deiodination (D1)
- Transporters



Thyroid Hormone Metabolism in the Liver


Hepatic Thyroid Hormone Disruption

Key Events in Thyroid Hormone Disruption and Relevance to Humans

Key Event	Evidence in Rats	Evidence in Humans	Reference
Serum TH Decrease	Yes	Yes	Cavlieri <i>et al.</i> 1973 Brucker-Davis 1998
Nuclear Receptor Activation	YesYesIn vivo and in vitroIn vitro		Barter and Klaassen 1994 Hood and Klaassen 2000
Hepatic UGT Induction	YesYesIn vivo and in vitroIn vitro		Barter and Klaassen 1994 Hood and Klaassen 2000
TTR Binding	YesYesEx vivoIn vitro		Cheek <i>et al.,</i> 1999 Hallgren and Darnerud 2002 Meerts <i>et al.</i> 2002
TBG Binding	BG Binding (TBG not present in adults)		Cheek <i>et al.</i> 1999
Hepatic Transporter Induction	Yes In vivo	Limited In vitro	Ribeiro <i>et al.</i> 1996; Mitchell <i>et al.</i> 2005; Wong <i>et al.</i> 2005; <i>Richardson et al.</i> , 2014
Increased TH or Conjugated TH Biliary Elimination	NO Data		Kato <i>et al.</i> 2005 Wong <i>et al.</i> 2005
Increased HepaticYesUptake/Accumulation of THIn vivo		Limited In vitro	Cheek <i>et al.,</i> 1999 Richardson <i>et al</i> ., 2014

Effect of Microsomal Enzyme Inducers on T4-UGT Activity in Rat Liver

Hood, A. et al. Toxicol. Sci. 2000 55:78-84

Inconsistencies in Serum T4 Decreases and Hepatic T4-UGT Activity in Rodents

Chemical	Nuclear Receptor	T4-UGT	Serum T4	Reference
β-NF	AhR	$\uparrow\uparrow\uparrow$	$\downarrow \downarrow \downarrow$	Hood and Klaassen, 2000
3-MC	AhR	$\uparrow\uparrow\uparrow$	$\downarrow \downarrow$	Hood and Klaassen, 2000
РСВ	AhR/PXR	↑ ↑	$\downarrow \downarrow \downarrow$	Hood and Klaassen, 2000
PCN	PXR	↑ ↑	$\downarrow \downarrow$	Hood and Klaassen, 2000
РВ	CAR	1	$\downarrow \downarrow \downarrow$	Hood and Klaassen, 2000
DE 71	AhR/CAR/PXR	↑ ↑	$\downarrow \downarrow$	Zhou <i>et al</i> ., 2002
BDE 47 (mouse)	CAR	⇔	\downarrow	Richardson <i>et al.</i> , 2008
PB/PCB (Gunn Rat)	AhR/CAR/PXR	⇔	$\downarrow \downarrow \downarrow$	Kato <i>et al.</i> , 2007; Richardson and Klaassen, 2010

- = increase = decrease
- ↔ = no change

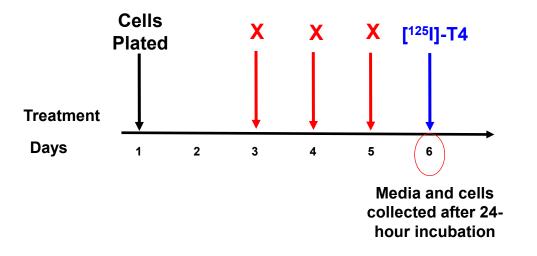
Primary Hepatocytes: The Gold Standard


- Their origin in native liver, they reflect the complete functionality of the human organ *in vivo* and thus provide highly predictive results in pharmacological and toxicological *in vitro* research
- Directly reflect the specific metabolism and functionality of the liver.
 - Nuclear receptor activation well studied in PHHs.

QUESTION?

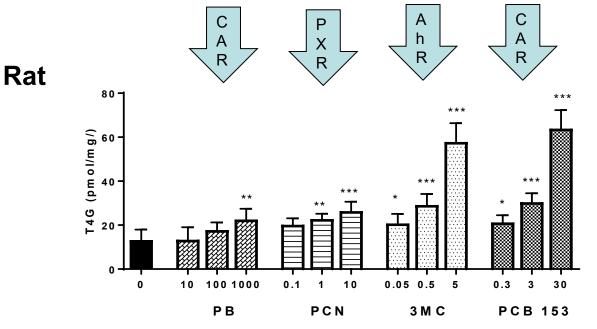
- Can nuclear receptor activators increase TH metabolism in primary hepatocyte cultures?
- Can we use rat and human hepatocytes to aid in species extrapolation?

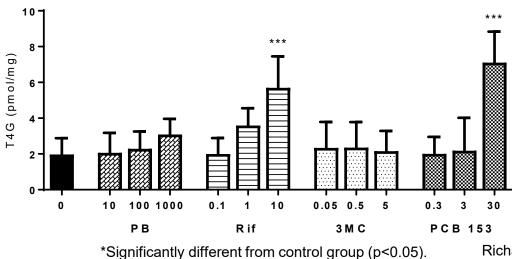
Thyroid Hormone Metabolism in Hepatocytes Experimental Methods


- Fresh male rat or human hepatocytes (Life Technologies)
- Sandwich-culture plated in 24-well plates
- Up to 24- hour incubation with [¹²⁵I]-T₄ (Perkin –Elmer)
 - 0.05uM 100uM
- Media and cells collected for metabolite analysis with UPLC and gamma counter

T4 Metabolic Profiles Following Exposure to Prototypical Nuclear Receptor Activators

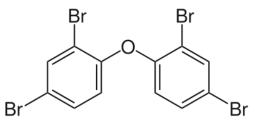
Experimental Methods


- Fresh male rat or human hepatocytes (Life Technologies).
- Sandwich-culture plated in 24-well plates.
- 72-hour incubation with PB (10, 100 or 1000µM), PCN (0.1, 1, or 10µM), Rif (0.1, 1, or 10µM), 3-MC (0.05, 0.5, 5µM), or PCB 153 (0.3, 3, 30µM).
- 24- hour incubation with 0.05μM (rat) or 0.1μM (human) [¹²⁵I]-T4 (Perkin –Elmer).
- Media and cells collected for metabolite analysis with UPLC.


Prototypical Nuclear Receptor Activators

- **PB**= Phenobarbital
 - CAR activator in rat and human
- PCN= Pregnenolone-16 α-carbonitrile
 PXR activator in rat
- Rif= Rifampicin
 PXR activator in human
- 3MC= 3-Methylcholanthrene
 AhR activator in rat and human
- **PCB 153**= 2,2',4,4',5,5'-Hexachlorobiphenyl
 - PB-like PCB
 - **Possible CAR** activator in rat and human

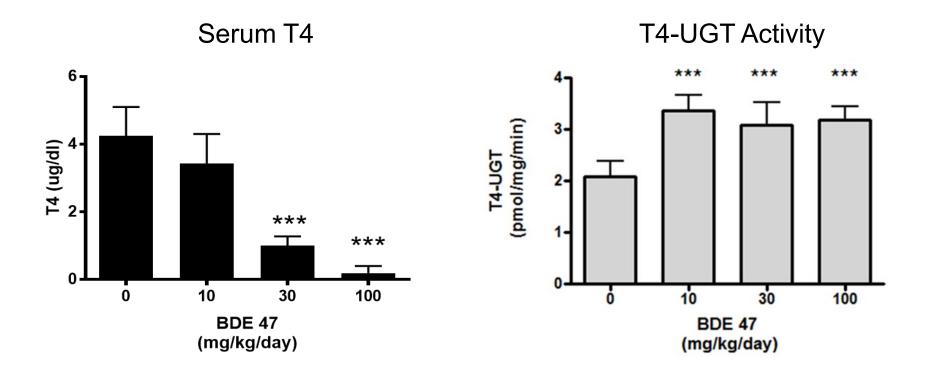
T4G in Media of Rat and Human Hepatocytes



ol group (p<0.05). Richardson *et. al*., (In preparation)

2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47)

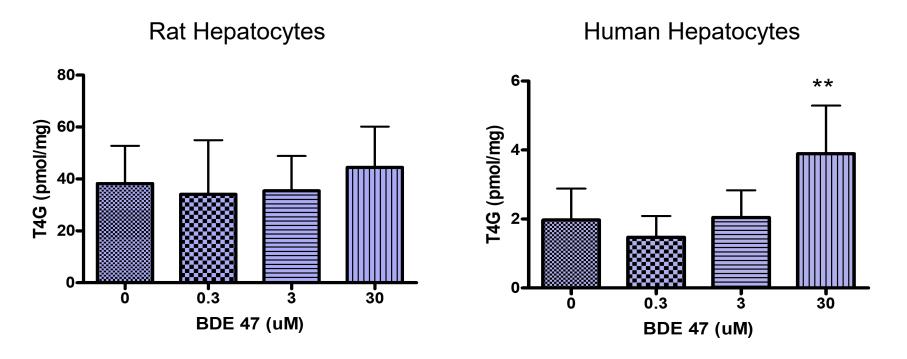
- Fire retardant in consumer products.
- Predominant congener found in wildlife and human samples.
- Decreases serum thyroid hormone concentrations in rodents.
 - Induction in hepatic T4 glucuronidation resulting in decreases in circulating T4 concentrations in rats.
 - <u>CAR activator in mice (Richardson *et al.*, 2008).</u>


Effects of BDE-47 on Thyroxine Metabolism Experimental Methods (In vivo)

- 60-day old female Sprague-Dawley rats.
- Treatment with a corn oil vehicle, 0, 10, 30 or 100 mg/kg BDE-47 for 4 consecutive days via oral gavage.
- Serum and liver collected on day 5.
- Serum total T4, liver enzymes (UGT and SULT), mRNA expression by real-time RT-PCR.

Effects of BDE-47 on Thyroxine Metabolism Experimental Methods (In vitro)

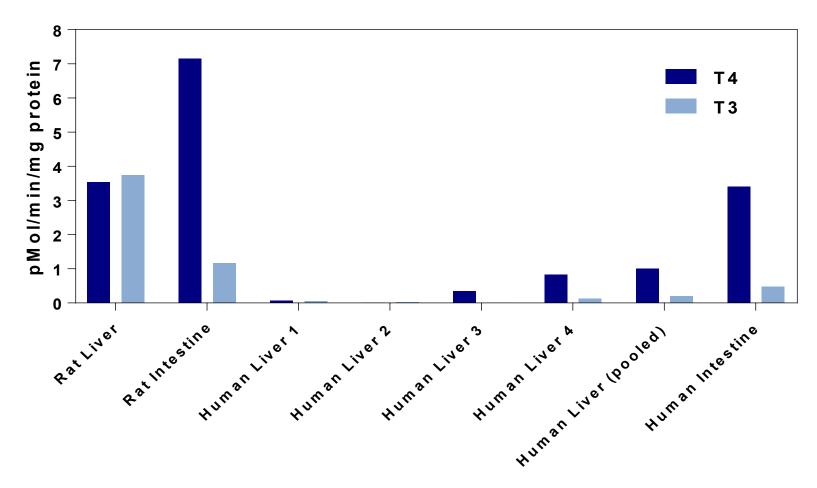
- Fresh male rat or human hepatocytes (Life Technologies).
- Sandwich-culture plated in 24-well plates.
- 72-hour incubation with BDE-47 (0, 0.3, 3 or 30μM).
- 24-hour incubation with 0.05µM (rat) or 0.1µM (human) [¹²⁵I]-T4 (Perkin –Elmer).
- Media and cells collected for metabolite analysis with UPLC.
- Cells collected for mRNA expression analysis.


Effects of BDE-47 on Serum T4 and Hepatic T4-UGT Activity in Rats

***Significantly different from control group (p<0.05). N=6/group

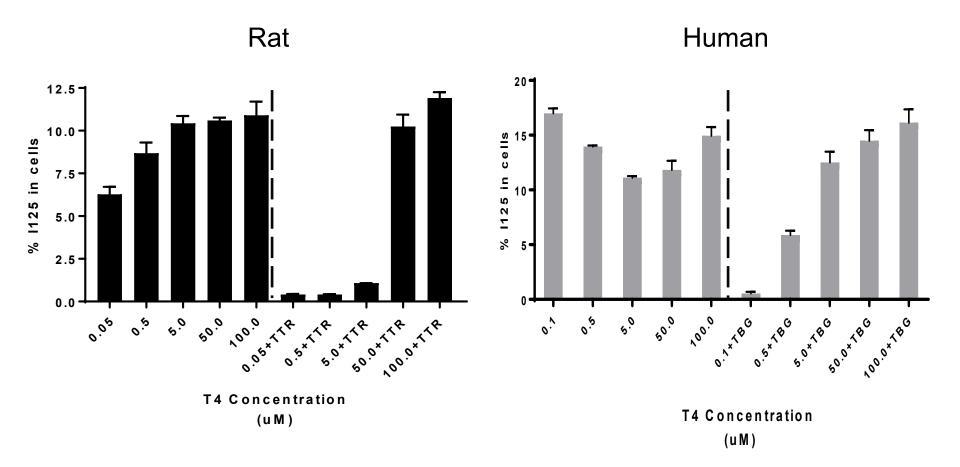
Richardson et. al., (In preparation)

Effects of BDE-47 on T4G in Media of Rat and Human Hepatocytes

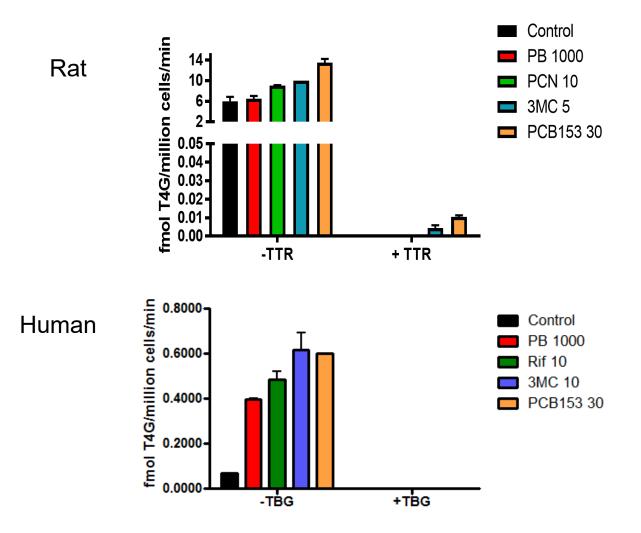


**Significantly different from control group (p<0.05).

Richardson et. al., (In preparation)


What We Don't Know

Influence of Intestinal UGT Activity on Thyroid Hormone Metabolism


What We Don't Know

Influence of Serum Binding Proteins on T4 Uptake

What We Don't Know

Effects of Binding Proteins on Hepatic T4 Metabolism

Summary and Conclusions

- New discoveries in nuclear receptor signaling biology are uncovering additional mechanisms for regulating hepatic metabolism and disposition.
- Hepatocyte cultures can be used to evaluate species differences in thyroid hormone metabolism and the impact of nuclear receptor activation on thyroid metabolism
 - Determine methods for assessing transporter interactions and enzyme induction (Adult and pediatric hepatocytes).
 - Focus on conditions to include the binding protein (TTR, TBG).
 - Validate cell culture and experimental conditions.
 - Standardize experiments to provide reproducible results from *in vitro* hepatic cultures.
 - Define the impact of cell quality metrics to outcomes.

Thank You

US Environmental Protection Agency

The content of this presentation does not necessarily reflect the views or the policies of the US EPA.