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Overview
• Uncertainty vs. Variability in HTTK model parameters
• Characterizing key uncertainty in chemical-specific TK parameters

• Fraction unbound in plasma protein (Fup)
• Intrinsic hepatic clearance rate (Clint)

• Characterizing variability: HTTK-Pop for human TK variability
• Relative contributions of uncertainty and variability to TK model 

predictions
• Simulating sensitive subpopulations



Uncertainty vs. variability in HTTK 
model parameters



Review: HTTK model parameters
Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019) or predicted in silico (Sipes et al. 
2017)

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)

Predict from phys-chem properties and 
tissue properties (Pearce et al., 2017)

Physiological parameters
Tissue masses (including body weight)

Gathered from data available in the 
published literature [Wambaugh et al. 2015; 

Pearce et al. 2017a]

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity



Chemical-specific parameters measured in vitro
carry measurement uncertainty

Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019)

Fraction unbound to plasma protein (Fup)
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CLint: Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Fup: Rapid Equilibrium 
Dialysis (RED) 
Waters et al. (2008)



Parameters represent biology — so they have 
population variability

Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Represent chemical-body interactions —

vary with individual genetics, environmental 
factors, age, etc.

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)
Physiological parameters
Tissue masses (including body weight)

Represent physiology — vary with individual 
genetics, environmental factors, age, etc.

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity



HTTK model parameters determine the slope relating 
Css to daily dose –
need to propagate both uncertainty & variability
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Slope = Css for 1 mg/kg/day:
determined by values of TK model parameters

Wambaugh et al. (2019)



Approach to uncertainty & variability: Monte Carlo

• Characterize uncertainty in chemical-specific parameters Fup and 
Clint in terms of probability distributions

• Characterize population variability in physiological parameters in 
terms of (correlated) probability distributions

• Draw samples from distributions: “simulated population”
• Evaluate HTTK model for each “simulated individual” in the 

“simulated population”
• Describe resulting distribution of HTTK model predictions



Characterizing key uncertainty in 
chemical-specific TK parameters



General approach to uncertainty quantification

Error

Unknown true value Observed (measured) value



General approach to uncertainty quantification

Error

Unknown true value Observed (measured) value

• Identify sources of error
• Develop mathematical model of 

error



General approach to uncertainty quantification

Error

Unknown true value Observed (measured) value

• Identify sources of error
• Develop mathematical model of 

error

Bayesian inference:
Find a distribution of possible true values compatible 
with the observed values, under this error model



Uncertainty in Fup



Understanding sources of error in Fup: How to 
measure in vitro using Rapid Equilibrium Dialysis 
(RED)

.

.

.

.
..

.

.
. .

1 2

Protein 
free 
side

Protein-
containing
side

Semi-permeable 
membrane 
(chemical can pass, 
but not protein)

Add 
plasma to 
one side

Add 
chemical

Let equilibrate 
(until unbound 
conc. equal on 
both sides)

Use mass 
spectrometry 
to measure 
chemical conc. 
from each side

(Some 
chemical 
will bind 
to protein)

𝐹𝐹𝑢𝑢𝑢𝑢 =
Protein−free conc.

Protein−containing conc.
Waters et al. (2008); Rotroff et al. (2010); Wambaugh et al. (2019)



https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
(GPL)

Sources of measurement uncertainty: 
Mass spectrometry

• Instrument noise
• Limit of quantification (LOQ)
• Instrument calibration

Kkmurray, CC BY-SA 3.0 via Wikimedia 
Commons

Peak area
Calibration: Area vs. concentration

Background noise

Wambaugh et al. (2019)

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
http://creativecommons.org/licenses/by-sa/3.0/


LOQ is a problem in the RED assay for highly-
bound chemicals

44% of chemicals in Wambaugh et al. (2019)

<LOQ

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
(GPL)

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif


Approach to <LOQ problem: 
Repeat RED assay with varying amounts of protein

<LOQ

100%

Estimate dissociation constant Kd
(strength of binding affinity between chemical and protein) 

30%

>LOQ

10%

>LOQ

Wambaugh et al. (2019)



Additional source of uncertainty: 
Non-specific chemical binding to membrane or walls

Wambaugh et al. (2019)



Bayesian inference model for 
Fup uncertainty

Error

Unknown true value:
Fup for a chemical

Observed (measured) value:
MS peak areas for protein-
free and protein-containing 

sides

• MS noise
• MS calibration
• LOQ
• Non-specific binding

Result: Distribution of Fup values for a 
chemical

Wambaugh et al. (2019)



Uncertainty in CLint



CLint: How to measure in vitro using pooled human 
hepatocytes

Add known 
amount of 
chemical

Measure chemical concentration remaining at
0, 15, 30, 60, and 120 minutes

Culture donated 
human hepatocytes 
from 10 adult 
volunteers

CLint can be estimated 
from fitting a decaying 
exponential

Rotroff et al. (2010); Wetmore et al. (2012, 2015); Wambaugh et al. (2019)



Mass spec uncertainties also apply to CLint

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
(GPL)

Kkmurray, CC BY-SA 3.0 via 
Wikimedia Commons

• Uncertainty in peak 
area

• LOQ
• Calibration curve

Wambaugh et al. (2019)

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
http://creativecommons.org/licenses/by-sa/3.0/


Additional uncertainty source: 
Is chemical really metabolized at all? 

(simulated data for illustration purposes)

“p-value”: Is there really a 
trend here at all?

Wambaugh et al. (2019)



Additional uncertainty source: 
Saturable metabolism

Km

10 uM

1 uM

figure adapted from supplemental material of 
Wambaugh et al. (2019)



Bayesian inference model for 
Clint uncertainty

Error

Unknown true value:
Clint for a chemical

Observed (measured) value:
MS peak areas at 5 time 

points

• MS noise
• MS calibration
• LOQ
• Probability of no metabolism
• Probability of saturation

Result: Distribution of Clint values for a 
chemical

Wambaugh et al. (2019)



Characterizing variability: HTTK-
Pop for human TK variability



HTTK physiological parameters

Physiological parameters
Tissue masses (including body weight)
Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity



Data source for population physiology: CDC 
NHANES

CDC NHANES = Centers for Disease Control National Health and 
Nutrition Examination Survey

Large, representative, ongoing survey of US population:
demographics, body measures, medical examination data….

NHANES does 
measure:
Sex
Age
Height
Weight
Serum creatinine

NHANES does not 
measure:
Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Ring et al. (2017)



Correlated Monte Carlo approach to simulating 
population variability in physiology: HTTK-Pop

Predict physiological TK 
quantities (as used by 
generic TK model) for 
each individual:

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES measured 
quantities for actual 
NHANES individuals 
(capturing covariance):

Sex
Age
Height
Weight
Serum creatinine Regression equations from 

literature (McNally et al., 2014)
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB 

[Bosgra et al. 2012], etc.)
Ring et al. (2017) 29



Chemical-specific parameters have both 
uncertainty and variability

Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Carry uncertainty from in vitro

measurements

Also have population variability: represent 
chemical-body interactions — vary with 

individual genetics, environmental factors, 
age, etc.

Fraction unbound to plasma protein (Fup)



Chemical-specific TK parameters: Two-stage Monte Carlo approach to 
modeling both measurement uncertainty and population variability

Step 2: Assume population 
variability (30% CV) around the 
sampled  “population average” value 
from Step 1, and draw 1 sample 

Repeat Steps 1 and 2 for each simulated 
individual to get sampled values that 
include both uncertainty & variability

For CLint: Add 5% “poor 
metabolizers” (10% of 
original pop. average) 31

Step 1: Draw 1 sample from 
uncertainty distribution and 
treat as “population average” 
value

Wambaugh et al. (2019)



Putting it all together: A table of HTTK model 
parameters for each “simulated individual” in a 
“simulated population”

SEQN Demographics Body 
measures

Tissue 
volumes

Blood 
flows

GFR Hepatocell
ularity

Fup Clint

Sex Age Ht Wt

67184 M 42 171 55 […] […] […] […] […] […]

52034 M 0.5 73 9 […] […] […] […] […] […]

64847 F 11 154 47 […] […] […] […] […] […]

51787 F 22 166 87 […] […] […] […] […] […]

49889 M 9 147 50 […] […] […] […] […] […]

64606 F 59 169 115 […] […] […] […] […] […] 

45549 F 50 165 80 […] […] […] […] […] […]

[…] […] […] […] […] […] […] […] […] […] […]



httk R package automates this Monte Carlo 
sampling & model evaluation process
> library(httk)
> set.seed(42)
> #Css for 1 mg/kg/day = slope
calc_mc_css(chem.name="benzo(a)pyrene", 

which.quantile = c(0.95, 0.5, 0.05))

Human plasma concentration returned in mg/L units 
for 0.95 0.5 0.05 quantile.

95%    50%     5% 
68.510 13.070  3.742 



Result: Percentiles of predicted Css vs. dose slope
95th %ile

5th %ile

C
ss

(µ
M

)

Dose0

Median
Slope = Css for 1 mg/kg/day



Another way to visualize: ratio of 95th percentile to median 
(roughly, how wide is the Css slope distribution?)



Relative contributions of 
variability & uncertainty



Figure adapted from Wambaugh et al. (2019)

For most chemicals, population variability 
produces more difference between 95th and 
50th percentile Css slopes than uncertainty 
does.



Simulating sensitive 
subpopulations



Identifying potentially sensitive sub-populations

95th %ile
(Most Sensitive 
5%)

5th %ile (Least 
Sensitive 5%)

C
ss

(µ
M

)

Dose0

Median

Slope = Css for 1 mg/kg/day

Who is in the most sensitive portion 
of the population?

What does this slope distribution look 
like for kids, for example?

Or people over 65?

To answer this question: Need to 
model TK variability for specified sub-
populations

Ring et al. (2017)



HTTK-Pop can generate simulated subpopulations 
with user-specified demographics

Name of list element User can specify… Example Default if not 
specified

agelim_years Age limits in years c(6,11) Ages 6-11 years All NHANES (0-79 
years)

agelim_months Age limits in months c(0,36) Ages 0-36 months All NHANES (0-79 
years)

gendernum # of males and 
females

list(Male = 
1000, Female = 
0)

1000 males, 0 females Randomly selected 
from NHANES

weight_category BMI category c('Overweight', 
'Obese')

BMI > 25 (overweight 
& obese)

c('Underweight', 
'Normal', 
'Overweight', 'Obese')

Use httkpop.generate.args argument to calc_mc_css()function: Takes a named list of arguments

HTTK-Pop generates physiology based on NHANES respondents in the specified demographic groups



Example of Css95 
differences by 
subpopulation

10 subgroups of interest

Heatmap: Css95 difference 
(subgroup vs. Total population) for 
50 chemicals with largest Css95 
difference in any subgroup



Conclusions



Conclusions
• Uncertainty vs. Variability in TK model parameters

• Measurement uncertainty: Chemical-specific parameters measured in vitro
• Population variability: Physiological & chemical-specific parameters

• Characterizing key uncertainty in chemical-specific TK parameters using Bayesian 
inference

• Fraction unbound in plasma protein (Fup)
• Intrinsic hepatic clearance rate (Clint)

• Characterizing variability: HTTK-Pop for human TK variability
• Correlated Monte Carlo approach based on CDC NHANES data

• Relative contributions of uncertainty and variability to TK model predictions
• For most chemicals, population variability has larger effect

• Simulating sensitive subpopulations
• HTTK-Pop can simulate populations with user-specified demographics



Thank you!
Questions?



References



1. Rotroff DM, Wetmore BA, Dix DJ, et al. Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. 
Toxicological Sciences. 2010;117(2):348-358

2. Wetmore BA, Wambaugh JF, Allen B, et al. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro 
Bioactivity to Inform Chemical Toxicity Testing. Toxicological Sciences. 2015 Nov;148(1):121-36

3. Wambaugh JF, Wetmore BA, Pearce R, Strope C, Goldsmith R, Sluka JP, et al. Toxicokinetic Triage for Environmental Chemicals. Toxicol Sci. 
2015;147(1):55-67.

4. Ring CL, Pearce RG, Setzer RW, et al. Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability. 
Environment International. 2017 2017/09/01/;106:105-118.

5. Shibata Y, Takahashi H, Chiba M, Ishii Y. Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an 
application of serum incubation method. Drug Metab Dispos. 2002;30(8):892-6.

6. Waters NJ, Jones R, Williams G, Sohal B. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein 
binding. J Pharm Sci. 2008;97(10):4586-95.

7. Wetmore BA, Wambaugh JF, Ferguson SS, et al. Integration of dosimetry, exposure, and high-throughput screening data in chemical 
toxicity assessment. Toxicological Sciences. 2012 Jan;125(1):157-74.

8. Wetmore BA. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment. Toxicology. 2015;332:94-101.



9. Wambaugh JF, Wetmore BA, Ring CL, Nicolas CI, Pearce RG, Honda GS, et al. Assessing Toxicokinetic Uncertainty and Variability in Risk 
Prioritization. Toxicol Sci. 2019;172(2):235-51.

10. Sipes NS, Wambaugh JF, Pearce R, et al. An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library. 
Environmental Science & Technology. 2017 2017/09/19;51(18):10786-10796.

11. Pearce RG, Setzer RW, Davis JL, Wambaugh JF. Evaluation and calibration of high-throughput predictions of chemical distribution to 
tissues. J Pharmacokinet Pharmacodyn. 2017b;44(6):549-65.

12. Jamei M, Marciniak S, Feng K, et al. The Simcyp® population-based ADME simulator. Expert Opinion on Drug Metabolism & Toxicology. 
2009;5(2):211-223.

13. McNally K, Cotton R, Hogg A, Loizou G. PopGen: A virtual human population generator. Toxicology. 2014;315:70-85.
14. Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, et al. Modeling Interindividual Variation in Physiological Factors Used in 

PBPK Models of Humans. Critical Reviews in Toxicology. 2003;33(5):469-503.
15. Bosgra S, van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their 

inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751-67.
16. Wetmore BA, Allen B, Clewell HJ, 3rd, et al. Incorporating population variability and susceptible subpopulations into dosimetry for high-

throughput toxicity testing. Toxicological Sciences. 2014 Nov;142(1):210-24.


	Monte Carlo for variability simulation and uncertainty
	Overview
	Uncertainty vs. variability in HTTK model parameters
	Review: HTTK model parameters
	Chemical-specific parameters measured in vitro �carry measurement uncertainty
	Parameters represent biology — so they have population variability
	HTTK model parameters determine the slope relating Css to daily dose –� need to propagate both uncertainty & variability
	Approach to uncertainty & variability: Monte Carlo
	Characterizing key uncertainty in chemical-specific TK parameters
	General approach to uncertainty quantification
	General approach to uncertainty quantification
	General approach to uncertainty quantification
	Uncertainty in Fup
	Understanding sources of error in Fup: How to measure in vitro using Rapid Equilibrium Dialysis (RED)
	Sources of measurement uncertainty: �Mass spectrometry
	LOQ is a problem in the RED assay for highly-bound chemicals
	Approach to <LOQ problem: �Repeat RED assay with varying amounts of protein
	Additional source of uncertainty: �Non-specific chemical binding to membrane or walls
	Bayesian inference model for Fup uncertainty
	Uncertainty in CLint
	CLint: How to measure in vitro using pooled human hepatocytes
	Mass spec uncertainties also apply to CLint
	Additional uncertainty source: �Is chemical really metabolized at all? 
	Additional uncertainty source: �Saturable metabolism
	Bayesian inference model for Clint uncertainty
	Characterizing variability: HTTK-Pop for human TK variability
	HTTK physiological parameters
	Data source for population physiology: CDC NHANES
	Correlated Monte Carlo approach to simulating population variability in physiology: HTTK-Pop
	Chemical-specific parameters have both uncertainty and variability
	Chemical-specific TK parameters: Two-stage Monte Carlo approach to modeling both measurement uncertainty and population variability
	Putting it all together: A table of HTTK model parameters for each “simulated individual” in a “simulated population”
	httk R package automates this Monte Carlo sampling & model evaluation process
	Result: Percentiles of predicted Css vs. dose slope
	Another way to visualize: ratio of 95th percentile to median (roughly, how wide is the Css slope distribution?)
	Relative contributions of variability & uncertainty
	Slide Number 37
	Simulating sensitive subpopulations
	Identifying potentially sensitive sub-populations
	HTTK-Pop can generate simulated subpopulations with user-specified demographics
	Example of Css95 differences by subpopulation
	Conclusions
	Conclusions
	Thank you!
	References
	Slide Number 46
	Slide Number 47

