

Screening ToxCast Chemicals in an Estrogen Receptor Transactivation Assay with Metabolic Competence

Chad Deisenroth Center for Computational Toxicology and Exposure deisenroth.chad@epa.gov

American Society for Cellular and Computational Toxicology 10th Annual Meeting October 12th, 2021

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development Center for Computational Toxicology and Exposure

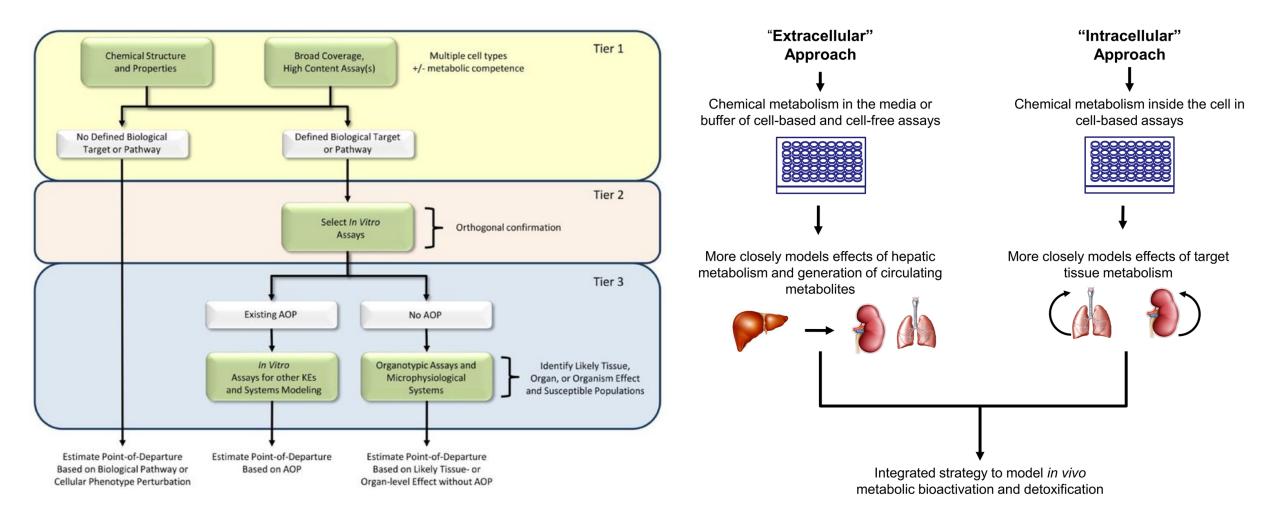
21st-Century Challenges for 21st-Century Toxicology

National Research Council 2007 report calling for a genuine commitment to the reduction, refinement, and replacement of animal testing.

Key Questions for Implementation – Addressing Xenobiotic Metabolism

- "One of the challenges of developing an *in vitro* test system to evaluate toxicity is the current inability of cell assays to mirror metabolism in the integrated whole animal..."
- Methods to Predict Metabolism How can adequate testing for metabolites in the high-throughput assays be ensured?
- Recommendations
 - Screening using computational approaches where possible.
 - Limited animal studies that focus on mechanism and specific metabolites.

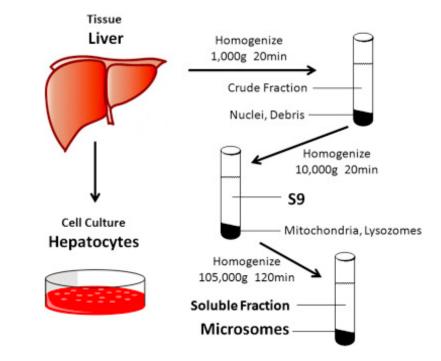
TOXICITY TESTING IN THE 21ST CENTURY A VISION AND A STRATEGY


Five work plan objectives

Examples of information gaps

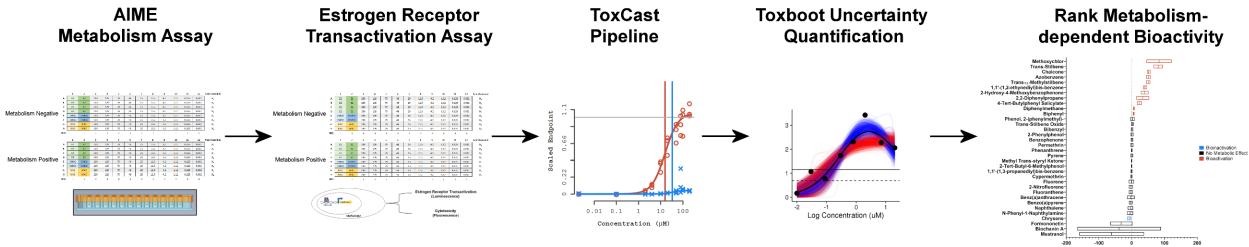
- Inadequate coverage of biological targets.
- Limited capability to address tissue- and organ-level effects.
- Lack of robust integrated approaches to testing and assessment (IATAs).
- Minimal capability for addressing xenobiotic metabolism in *in vitro* test systems.




The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency

Extracellular Approach: The Alginate Immobilization of Metabolic Enzymes (AIME) Method

- Liver Metabolism: Hepatic S9 fractions derived from species of interest.
- **Alginate Hydrogel:** Widely used in a variety of pharmaceutical and biomedical applications due to high biocompatibility, low toxicity, and mild gelation by divalent cations.
- **AIME Method:** The AIME platform consists of custom 96- or 384-well microplate lids containing solid supports attached to encapsulated hepatic S9-alginate microspheres.



TOXICOLOGICAL SCIENCES, 178(2), 2020, 281-301

doi: 10.1093/toxsci/kfaa147 Advance Access Publication Date: 29 September 2020 Research Article

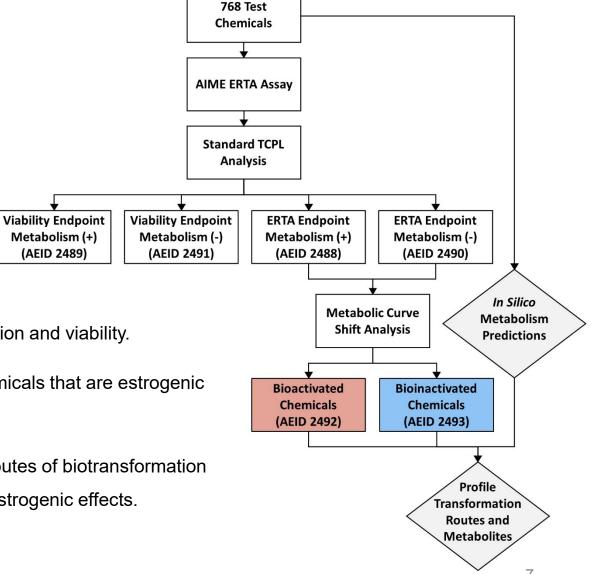
The Alginate Immobilization of Metabolic Enzymes Platform Retrofits an Estrogen Receptor Transactivation Assay With Metabolic Competence

Chad Deisenroth ,^{*,1} Danica E. DeGroot ,^{*,2} Todd Zurlinden ,^{*} Andrew Eicher,^{*} James McCord ,^{*} Mi-Young Lee,^{†3} Paul Carmichael,[†] and Russell S. Thomas

Study Highlights

- · Reprioritization of hazard based on metabolism-dependent bioactivity.
- Demonstrated utility of applying the AIME method for identification of false positive and false negative target assay effects.
- Enhanced *in vivo* concordance with the rodent uterotrophic bioassay.

A AUC


Screening ToxCast Chemicals in an Estrogen Receptor Transactivation Assay with Metabolic Competence

Kristen Hopperstad¹, Danica E. DeGroot^{1,2}, Todd Zurlinden¹, Cassandra Brinkman¹, Russell S. Thomas¹, Chad Deisenroth^{1*}

Author Affiliations:

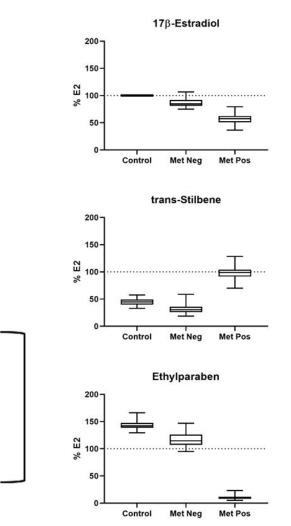
¹Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States

²Current Address: Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration



Study Highlights

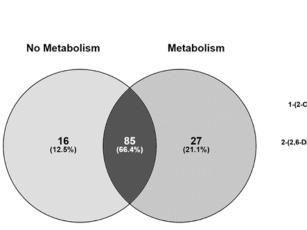
- ToxCast Chemical Library: Screen 768 chemicals for ER transactivation and viability.
- Hazard Identification and Prioritization: Identify and rank-order chemicals that are estrogenic and exhibit metabolism-dependent changes in bioactivity.
- In Silico Prediction and Profiling: Profile the common mechanistic routes of biotransformation and the identify of putative metabolites associated with the observed estrogenic effects.

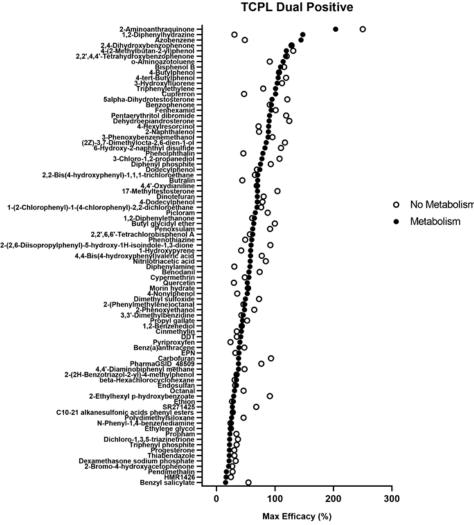


- **Target Bioassay**: OECD TG 455 -VM7Luc Estrogen Receptor Transactivation (ERTA) Assay
- **Metabolism Assay**: AIME system configured for rapid 384-well high-throughput screening.
- **Experimental Design**: Parallel evaluation of parent and metabolite effects.
- Reference Chemicals: Selected for ER target bioassay and the AIME metabolism assay.
 - ERTA: 17β-Estradiol
 - AIME (activated): *trans*-Stilbene
 - AIME (inactivated): Ethylparaben
- **Performance Statistics**: Determined for ERTA and AIME assay.

Metabolism Negative

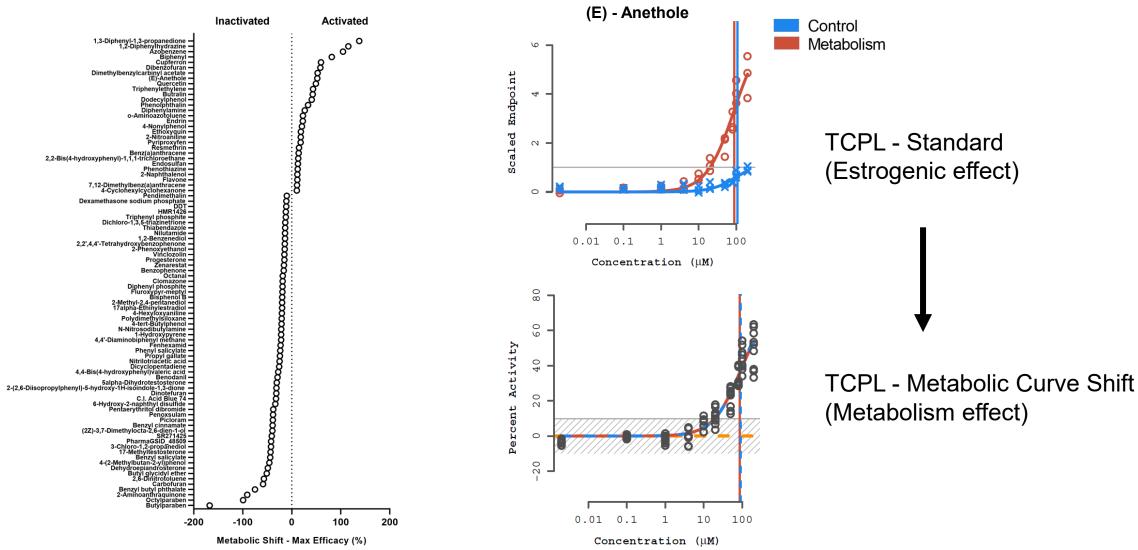
Metabolism Positive

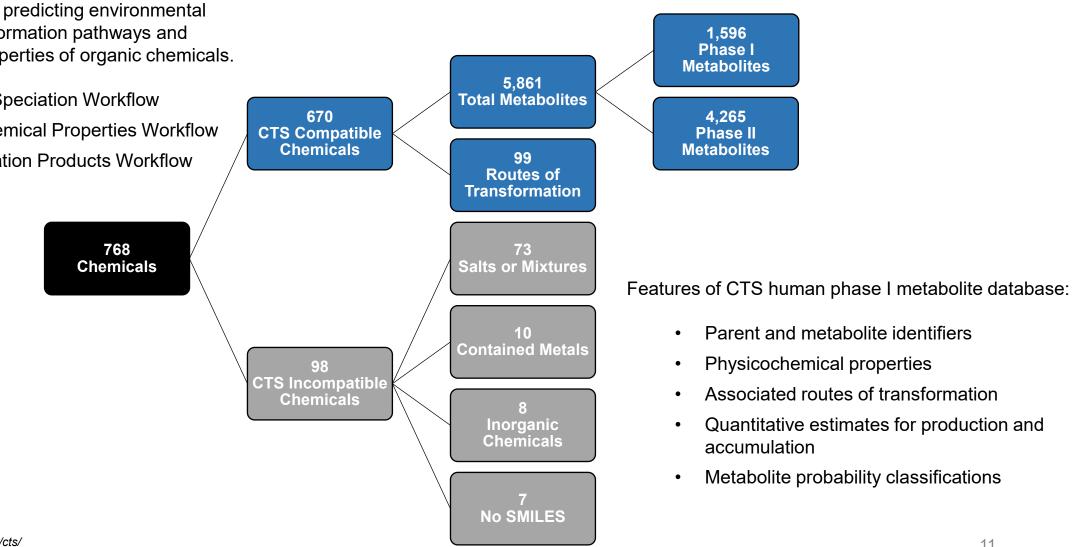

8



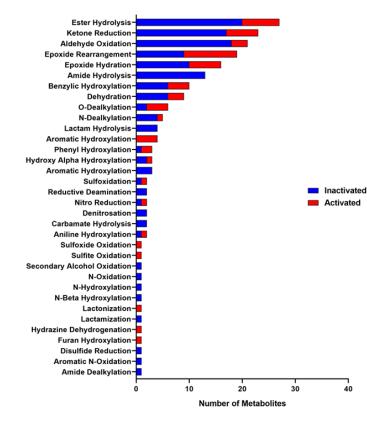
ToxCast Pipeline Analysis

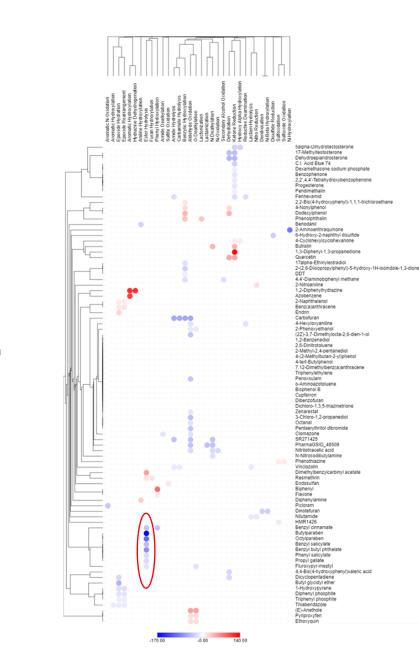
ToxCast Pipeline (TCPL) analysis run to identify estrogenic chemicals.


- 128/768 (17%) chemicals identified as bioactive for ER transactivation.
- The majority of chemicals (67%) are estrogenic with or without metabolism.
- A minor subset are bioactive exclusively with or without metabolism.


Metabolism Curve Shift Analysis

- Screening-level classification of activated and inactivated chemicals.
- Reprioritization of hazard based on empirical shift in metabolism-dependent bioactivity.

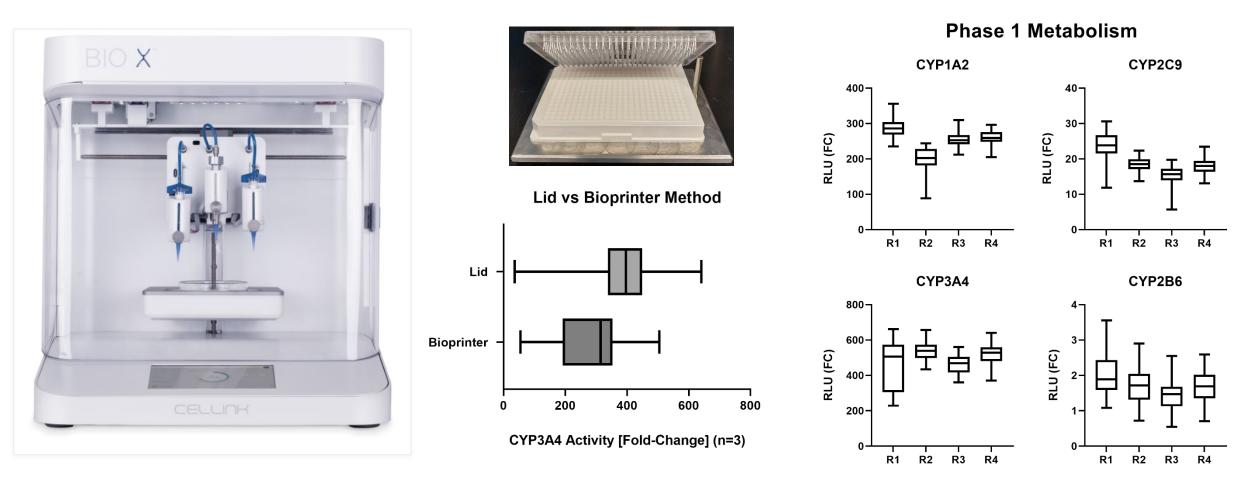

The Chemical Transformation Simulator (CTS) is a web-based tool for predicting environmental and biological transformation pathways and physicochemical properties of organic chemicals.


- **Chemical Speciation Workflow** ٠
- **Physicochemical Properties Workflow** .
- **Transformation Products Workflow**

Profiling Predicted Metabolites and Common Mechanisms of Biotransformation

Profiled novel chemicals associated with metabolism-dependent changes in ERTA bioactivity:

- Common mechanistic routes of transformation.
- The identify of putative metabolites associated with the observed estrogenic effects.



Profiling Predicted Metabolites and Common Mechanisms of Biotransformation

CASRN	Name	Classification	Metab Routes	Metab Global Accumulation	Metab Likelihood	Met_Neg Hitc	Met_Pos Hitc	Biotransformation	Metabolic Shift
94-26-8	Butylparaben	Parent	NA	NA	NA	1	0	inactivated	-167.3818927
99-96-7	4-Hydroxybenzoic acid	Metabolite	EsterHydrolysis	0.4988	LIKELY	1	0	inactivated	-167.3818927
71-36-3	1-Butanol	Metabolite	EsterHydrolysis	0.4256	LIKELY	1	0	inactivated	-167.3818927
1219-38-1	Octylparaben	Parent	NA	NA	NA	1	0	inactivated	-99.32932278
99-96-7	4-Hydroxybenzoic acid	Metabolite	EsterHydrolysis	0.4987	LIKELY	1	0	inactivated	-99.32932278
111-87-5	1-Octanol	Metabolite	EsterHydrolysis	0.4255	LIKELY	1	0	inactivated	-99.32932278
85-68-7	Benzyl butyl phthalate	Parent	NA	NA	NA	1	0	inactivated	-74.98383135
88-99-3	Phthalic acid	Metabolite	EsterHydrolysis	0.2469	LIKELY	1	0	inactivated	-74.98383135
100-51-6	Benzyl alcohol	Metabolite	EsterHydrolysis	0.3104	LIKELY	1	0	inactivated	-74.98383135
71-36-3	1-Butanol	Metabolite	EsterHydrolysis	0.3177	LIKELY	1	0	inactivated	-74.98383135
118-58-1	Benzyl salicylate	Parent	NA	NA	NA	1	1	inactivated	-43.94470165
69-72-7	Salicylic acid	Metabolite	EsterHydrolysis	0.4944	LIKELY	1	1	inactivated	-43.94470165
100-51-6	Benzyl alcohol	Metabolite	EsterHydrolysis	0.4135	LIKELY	1	1	inactivated	-43.94470165
103-41-3	Benzyl cinnamate	Parent	NA	NA	NA	1	0	inactivated	-39.07342352
621-82-9	Cinnamic acid	Metabolite	EsterHydrolysis	0.4789	LIKELY	1	0	inactivated	-39.07342352
100-51-6	Benzyl alcohol	Metabolite	EsterHydrolysis	0.4092	LIKELY	1	0	inactivated	-39.07342352
121-79-9	Propyl gallate	Parent	NA	NA	NA	1	1	inactivated	-24.05419192
149-91-7	Gallic acid	Metabolite	EsterHydrolysis	0.4989	LIKELY	1	1	inactivated	-24.05419192
71-23-8	1-Propanol	Metabolite	EsterHydrolysis	0.4259	LIKELY	1	1	inactivated	-24.05419192
118-55-8	Phenyl salicylate	Parent	NA	NA	NA	1	0	inactivated	-23.42557027
69-72-7	Salicylic acid	Metabolite	EsterHydrolysis	0.4997	LIKELY	1	0	inactivated	-23.42557027
108-95-2	Phenol	Metabolite	EsterHydrolysis	0.4997	LIKELY	1	0	inactivated	-23.42557027
81406-37-3	Fluroxypyr-meptyl	Parent	NA	NA	NA	1	0	inactivated	-18.89353032
69377-81-7	Fluroxypyr	Metabolite	EsterHydrolysis	0.457	LIKELY	1	0	inactivated	-18.89353032
123-96-6	2-Octanol	Metabolite	EsterHydrolysis	0.4848	LIKELY	1	0	inactivated	-18.89353032
]]
	Ŷ		Ŷ	Ŷ				Ŷ	
Parent and Metabolite Identifiers Tra			Route of Transformation	Accumula and Proba		<i>In Vitro</i> Metabolism Data			
			Classification				13		

Adaptation of the Alginate Immobilization of Metabolic Enzymes Platform to a 3D Bioprinting Approach for Metabolism-based High-throughput Screening

Goal: Adapt the AIME method to an automated 384-well approach using bioprinting.

Kristen Hopperstad, PhD 21st Century Challenges Flash Poster # 10

Acknowledgements

Kristen Hopperstad Danica DeGroot Todd Zurlinden Andrew Eicher James McCord Cassandra Brinkman Woody Setzer Katie Paul-Friedman Madison Feshuk Steve Simmons Rusty Thomas

Paul Carmichael Mi-Young Lee

Kamel Mansouri Nicole Kleinstreuer Steve Ferguson