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Hepatic Steatosis = Fatty liver fatty acid [FFA]. count determined by Hoechst staining. 7-day incubation of 1 mM 1:2 oleate:palmitate following a 1h substrate incubation, shown in ng/mL proxy viability assay were fit to a non- (LDH) release assays from low-throughput methods.
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. . . . We can assess the impact of steatosis on CYP enzyme activity by examining reference
increased fat retention due to decreased fatty acid metabolism. : o :
toxicants targeted by specific CYP metabolism:

The resultant impact on chemical toxicity can be o g st o chemea e oy o ! e 3 s e
quantified in a high-throughput, hepatic cell culture.
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(O Mitochondrial or cellular membrane potentials coupled with GSH/ROS measures may indicate
additional parameters of mechanistic toxicity using similar workflow processes.
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