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“Translation of high throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 

Recent advances in high throughput 
toxicity assessment, notably the ToxCast 
and Tox21 programs… and in high 

throughput computational exposure 
assessment [ExpoCast] have enabled 
first-tier risk-based rankings of

chemicals on the basis of margins 
of exposure” -

NASEM (2017)

National Academies 
of Sciences, 
Engineering, and 
Medicine (NASEM)

In order to perform risk-based ranking we need data on hazard, 
toxicokinetics, and exposure… 

Exposure

Hazard

High Throughput
Risk 

Prioritization

Toxicokinetics
(easier to deal with than toxicodynamics)

Calculating Chemical Risk
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NAMs for Exposure Science

 The tools to characterize both toxicity and 
exposure have evolved significantly in the past 
decade

 NAMs for exposure science are being developed 
to enable risk assessors to more rapidly address 
public health challenges and chemical regulation
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboard
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Machine Learning NAMS

Chemical Structure 
and Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
agent

viscosity 
controlling 

agent
vinylUV 

absorber
ubiquitoussurfactant

pre-
servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Probabilistic 
Predictions of 

Potential Chemical 
Uses

Chemical Functional Use Database (FUSE)

Phillips et al. (2017)

Successful 
Model

Failed
Model

Random Forest 
Classification Models

(Breiman, 2001) 
with five-fold cross 

validation
Positive Examples Negative Examples
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Recycled Consumer 
Materials

Residential Dust

Rager et al., Env. Int., 2016

Phillips et al., Env. Sci. Tech. 2018

Published and Ongoing NTA Studies in the 
ExpoCast Project

Consumer Product Emissions
from Different Substrates

Residential Air
Pooled Human Blood

Source and Release Fate and Transport Exposure

Lowe et al., Submitted

Pilot: 20 Consumer Product Categories

Emerging Science: How can we quantify concentrations of chemicals in media using NTA?

Human Placenta

Rager et al., Repro. Tox. , 2020

Slide from Kristin Isaacs
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Method 1

EPA’s Non-Targeted Analysis 
Collaborative Trial (ENTACT)

 Phase 1: 
 Collaborators provided 10 mixtures of 100-

400 ToxCast chemicals each
 Mass spectrometry equipment vendors 

provided with individual chemical standards 

 Phase 2: Fortified reference house dust, human 
serum, and silicone wristbands

The Chemical Universe

Method 2

 Suspect screening / Non-targeted analyses (SSA/NTA) present 
opportunities for new exposure data

 What NTA methods are available? What is the coverage of chemical 
universe and matrices? How do methods differ in their coverage?

Sobus et al.  (2017)

Led by Jon Sobus, Seth 
Newton and Elin Ulrich
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High Throughput Models for Key Pathways
Consumer (Near-Field) Pathways

SHEDS-HT (Isaacs et al., 2014)

Ambient (Far-Field) Pathways

RAIDAR-ICE (Li et al., 2018)

FINE (Shin et al., 2015)

UseTox (Rosenbaum et al., 2008)

RAIDAR (Arnot et al., 2006, 
2008)

Dietary Pathways

UseTox (Rosenbaum et al. (2008)

SHEDS-HT (Biryol et al., 2017)

Slide from Kristin Isaacs
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Fit-for-Purpose Exposure Modeling Frameworks

Mechanistic 
description of the 
built environment 
and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across 
sources, routes, scenarios, 
chemicals 

Description of 
human behavior
or population

Slide from Kristin Isaacs
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Fit-for-Purpose Exposure Modeling Frameworks

Mechanistic 
description of the 
built environment 
and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across 
sources, routes, scenarios, 
chemicals 

Description of 
human behavior
or population

• Models of different levels of complexity have 
overlapping data needs

• They also share some universal challenges

SHEDS-HT, Isaacs et al., 2014

Li et al., 2018

FINE, Shin et al., 2015

Eichler and Little, 2020

EPA, 2019

Slide from Kristin Isaacs
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Ensemble Predictions
 We can use ensemble methods to make more stable models and characterize uncertainty

Hurricane Path Prediction is an 
Example of Integrating Multiple Models

 “Ensemble methods are learning 
algorithms that construct a set of 
classifiers and then classify new data 
points by taking a (weighted) vote of their 
predictions.” Dietterich (2000)

 Ensemble systems have proven 
themselves to be very effective and 
extremely versatile in a broad spectrum of 
problem domains and real-world 
applications (Polikar, 2012)

 Ensemble learning techniques in the 
machine learning paradigm can be used 
to integrate predictions from multiple 
tools. (Pradeep, 2016)
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)

Space of 
Chemicals

Chemicals 
with 

Monitoring 
Data

In
fe

rr
ed

 In
ta

ke
 R

at
e

Model 1
Model 2… Evaluate Model Performance

and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors

Wambaugh et al., 2018
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23

SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathway(s)

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 far field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 far field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 far field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
far field (2.02)

Arnot et al. (2008) 8167 far field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) near field Direct (2017)

Isaacs (2017) 7511 far field Industrial and 
Pesticide

SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Ring et al., 2018



24 of 43 Office of Research and Development

24

SEEM3: Pathway-Based Consensus Modeling

Ring et al., 2018

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine

Co
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el
 P
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ct
io

ns

 SEEM3 consensus model provides estimates of 
human median intake rate (mg/kg/day) for 
nearly 500,000 chemicals via the CompTox 
Chemicals Dashboard 
(http://comptox.epa.gov/dashboard)

 SEEM3 first predicts relevant exposure pathways 
from chemical structure – model predictions are 
then weighted according to the models’ abilities 
to explain NHANES data

 We rely on pathway determinations from CPDat

 We rely on NHANES biomonitoring data
 2014 FIFRA Scientific Advisory Panel 

identified need for broader sets of 
evaluation data

http://comptox.epa.gov/dashboard
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EcoSEEM Metamodel for Surface 
Water Chemical Concentrations

Sayre et al, 
in preparation

Slide from Risa Sayre

(m)                                          (y)                        

EcoSEEM
metamodel

USGS/EPA water 
monitoring data

Chemical-
specific

information

Release (loading) and
fate predictors

(l)                                                      (p)                         
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In Vitro-In Vivo Extrapolation (IVIVE)

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals

Breen et al. (submitted)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

Iin vivo 
TK data

Concentration

Re
sp

on
se

In vitro Bioactivity 
Assay
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Reverse Dosimetry (IVIVE)

Breen et al. (submitted)
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[X]

𝐀𝐀𝐀𝐀𝐀𝐀𝑪𝑪𝒔𝒔𝒔𝒔 =
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Reverse Dosimetry (IVIVE)

Breen et al. (submitted)
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Reverse Dosimetry (IVIVE)

Breen et al. (submitted)
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High Throughput Toxicokinetics (HTTK)

.

.
.

....
.. .1 2

In vitro toxicokinetic data
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High Throughput Toxicokinetics (HTTK)

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

In vitro toxicokinetic data

.

.
.

....
.. .1 2
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High Throughput Toxicokinetics (HTTK)

Inhaled Gas
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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Open-Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Toxicokinetics NAMs: In Vitro Measurements and Generic 
PBTK Models
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In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating TK 
models

 Curation and development ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open source curve fitting software 
invivoPKfit used to calibrate models to all data:

39Sayre et al. (2020)

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
https://github.com/USEPA/CompTox-PK-CvTdb
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Developing Models with the CvT Database

Linakis et al. (2020)

 USAF and EPA developed generic gas inhalation 
physiologically-based toxicokinetic (PBTK) 
model 

 Evaluated HTTK with CvTdb: 142 exposure 
scenarios across 41 volatile organic chemicals 
were modeled and compared to published in 
vivo data for humans and rat

 R2 was 0.69 for predicting peak concentration
 R2 was 0.79 for predicting time integrated 

plasma concentration (Area Under the Curve, 
AUC)
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NAM Makes Use of
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Exposure NAM 
Class Description Traditional Approach

Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data 
to generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information • • - •

Chemical 
Descriptors

Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical 
analyses by humans - •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data 
on a per chemical basis • • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Life-stage and Demographic Specific Predictions
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 In ExpoCast we develop models and perform experiments for both 
exposure and dosimetry (toxicokinetics)

 HTTK (high throughput toxicokinetics) includes a suite of peer-reviewed 
models for toxicokinetics that can be parameterized for nearly one 
thousand chemicals
 Currently adding new models (aerosol, dermal, human gestational)
 Adding new structure-based predictors for data that are currently 

measured in vitro

 SEEM (systematic empirical evaluation of models) is a consensus meta-
modeling framework for exposure
 Trained to monitoring data (developing more)
 Trained to chemical use data (developing more)
 Human developed, ecological and occupational in progress

Outlook

Schmidt (2016)
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