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“Translation of high throughput data into risk-
based rankings is an important application of

exposure data for chemical priority-setting.
Recent advances in high throughput

toxicity assessment, notably the ToxCast
and Tox21 programs... and in high

21ST CENTURY .
SCIENCE throughput computational exposure
TO IMPROVE assessment [ExpoCast] have enabled
RISK-RELATED High Throughput first-tier risk-based rankings of
EVALUATIONS & gnp
Risk chemicals on the basis of margins
Prioritization of exposure” - National Academies

of Sciences,
Engineering, and
Medicine (NASEM)

NASEM (2017) Toxicokinetics Exposure

(easier to deal with than toxicodynamics)

In order to perform risk-based ranking we need data on hazard,
Office of Research and Development toxicokinetics, and exposure...
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NAMs for Exposure Science

" The tools to characterize both toxicity and
exposure have evolved significantly in the past

decade

" NAMs for exposure science are being developed
to enable risk assessors to more rapidly address
public health challenges and chemical regulation
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Abstract

Chemical risk assessment relies on knowledge of hazard, the
dose-response relationship, and exposure to characterize
potential risks to public health and the environment. A chemical
with minimal toxicity might pose a risk if exposures are exten-
sive, repeated, and/or occurring during critical windows across
the human life span. Exposure assessment involves under-
standing human activity, and this activity is confounded by
interindividual variability that is both biological and behavioral.
Exposures further vary between the general population and
susceptible or occupationally exposed populations. Recent
computational exposure efforts have tackled these problems
through the creation of new tools and predictive models. These
tools include machine learning to draw inferences from existing
data and computer-enhanced screening analyses to generate

|_new data. Mathematical models provide frameworks describina
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Exposure NAM
Class Description Traditional Approach

New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. High throughput methods using in vitro data . : :
Toxicokinetics : e , . : Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Measurement
Toxicokinetics
Descriptors
Machine Learning

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g naking p e , c o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from ) .
_ , .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , , ® o o o - o
. ) on a per chemical basis
a prediction for a new chemical

\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)
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New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample
. . High throughput methods using in vitro data . , ,
Toxicokinetics : e , . : Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g naking p e , c o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical .
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from ) .
, _ .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , , ® o o o - o
L. . on a per chemical basis
a prediction for a new chemical

Machine Learningl Computer algorithms to identify patterns Manual Inspection of the Data o o ° :

. e . Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)
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Machine Learning
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Chemical Structure
and Property Descriptors

Machine Learning NAMS

Chemical Functional Use Database (FUSE)
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Random Forest
Classification Models
(Breiman, 2001)
with five-fold cross
validation
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Model

Failed
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Probabilistic
Predictions of
Potential Chemical
Uses

Phillips et al. (2017)
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\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study
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Class Description Traditional Approach
New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals  Targeted (chemical-specific) analyses - o e o °
present in a sample

High throughput methods using in vitro data

Measurement
Toxicokinetics
Descriptors
Machine Learning

Toxicokinetics ) . Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g nasing b > IS , c o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans

Statistical approaches that use the data from ) .
. : .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in ® o o o - o

- . on a per chemical basis
a prediction for a new chemical
\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data o o ° -

Integration of exposure and other NAMs to
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)
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Eg\g;g\r;mental Protection
Source and Release Fate and Transport Exposure

Pilot: 20 Consumer Product Categories Residential Air
| Pooled Human Blood

' 100% COTTON

| MACHINE WASH
1 COLD WATER
 TUMBLE DRY LW
REMIVE PROMFTLY
D BLEACH
i MaDEmus.A.

Phillips et al., Env. Sci. Tech. 2018 ResidentialDuct

Human Placenta

Recycled Consumer
Materials

Consumer Product Emissions
from Different Substrates

Rager et al., Env. Int., 2016

Lowe et al., Submitted

Emerging Science: How can we quantify concentrations of chemicals in media using NTA?

Office of Research and Development Slide from Kristin Isaacs
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" What NTA methods are available? What is the coverage of chemical
universe and matrices? How do methods differ in their coverage?

The Chemical Universe Method 1

Friadyery UNIVERSITY™
Sinai Db

" Phase 1:
" Collaborators provided 10 mixtures of 100-
400 ToxCast chemicals each
" Mass spectrometry equipment vendors
provided with individual chemical standards

< A

btttb

o
-

Led by Jon Sobus, Seth " Phase 2: Fortified reference house dust, human

Method 2
Newton and Elin Ulrich serum, and silicone wristbands
Office of Research and Development Sobus et al. (2017)
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Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. High throughput methods using in vitro data . : :

Toxicokinetics ke sz , .u. e Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models
Models capable of making predictions for Models requiring detailed, chemical- and

HTE Models . o AuITing

thousands of chemicals scenario-specific information

Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans

Statistical approaches that use the data from ) .
, _ .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , , ® o o o - o
- . on a per chemical basis
a prediction for a new chemical
\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data o o ° -

. e . Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study
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Consumer (Near-Field) Pathways

Ambient (Far-Field) Pathways

Dietary Pathways

SHEDS-HT (Isaacs et al., 2014)
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RAIDAR-ICE (Li et al., 2018)
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MECh,an{St'C 'l Full exposure
description of the
. . . . assessment
built environment + First-tier
and exposure assessment/
processes, including L eemng
temporal variability Pnont:za ’
Level of aggregation across Description of
sources, routes, scenarios, human behavior
chemicals i or population
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description of the asti et
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temporal variability

L atwﬁl/sﬁeiening
Prioritizati

Level of aggregation across Description of

sources, routes, scenarios,

chemicals or population

?

* Models of different levels of complexity have
overlapping data needs
* They also share some universal challenges

Office of Research and Development

Slide from Kristin Isaacs

Eichler and Little, 2020
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SHEDS-HT, Isaacs et al., 2014
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FINE, Shin et al., 2015
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present in a sample
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Toxicokinetics : e , . : Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Measurement
Toxicokinetics
Descriptors
Machine Learning

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g naking p e , c o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans

Statistical approaches that use the data from _ .
, : . . Comparison of model predictions to data
m many chemicals to estimate the uncertainty in , , ® o o o - o
- : on a per chemical basis
a prediction for a new chemical
\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study
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"  We can use ensemble methods to make more stable models and characterize uncertainty

" “Ensemble methods are learning 9 @
algorithms that construct a set of : :EMN.
classifiers and then classify new data

points by taking a (weighted) vote of their

' CEMN
"  Ensemble systems have proven g S—

predictions.” Dietterich (2000) GFSO! NVOMJ AEMN \ﬁ/

themselves to be very effective and \ Vx)
extremely versatile in a broad spectrum of

. OFCL
problem domains and real-world

applications (Polikar, 2012) N\

" Ensemble learning techniques in the
machine learning paradigm can be used

to integrate predictions from multiple
tools. (Pradeep, 2016)

Hurricane Path Prediction is an
Office of Research and Development Example of Integrating Multiple Models
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" We use Bayesian
methods to
incorporate multiple
models into
consensus predictions

Chemicals ~— )
with E ‘\\

Inferred Intake Rate

for 1000s of chemicals Xposure . :
within the Systematic e Inference " Different
Y Data Chemicals
Empirical Evaluation S .
of Models (SEEM) | YIEXEEW = Available Exposure Predictors
(Wambaugh Dataset 2 e :
gh et al., 2013,

2014; Ring et al., 2018) Model 2

/ ‘ Evaluate Model Performance

and Refine Models

Office of Research and Development Wambaugh et al., 2018



< EPA Evaluating Exposure Models with
E:\i/ti?c?n?rﬁ?etr?tsal Protection the SEEM Framework

Agency

" We use Bayesian

methods to %
incorporate multiple f, Calibrate
models into = _ models
consensus predictions Chemicals < = \
for 1000s of chemicals i Exposure o v\\ :
within the Systematic T .
.. ) Data L Chemicals
Empirical Evaluation SR c|
f Models (SEEM) Dataset 1 : >
ot iviodels | Ve[ == Available Exposure Predictors
(Wambaugh et al.,, 2013 DatasCH g
H - ’ o000 MOdeI 2
2014; R ., 2018
ing et al., 2018) Evaluate Model Performance

and Refine Models

JEXEZEN Office of Research and Development Wambaugh et al., 2018



EPA

United States
Environmental Protection
Agency

" We use Bayesian

methods to

incorporate multiple

models into

consensus predictions Chenjicals /‘
for 1000s of chemicals Mo‘r"lviltTring Exposure
within the Systematic Data Inference

Empirical Evaluation

of Models (SEEM)

(Wambaugh et al., 2013,
2014; Ring et al., 2018)

| Dataset 1
Dataset 2

Model 1
Model 2

Office of Research and Development

Evaluating Exposure Models with
the SEEM Framework

@l Estimate

& | Uncertainty Calibrate
Q

S * ~ models
1= \

= N\

o + T~ Different
"::') f Chemicals

== Available Exposure I?redictorsn

Evaluate Model Performance
and Refine Models

Wambaugh et al., 2018
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Apply calibration and estimated uncertainty

‘m to other chemicals

" We use Bayesian

methods to = .
incorporate multiple e Uncertai\ty Calibrate
models into - : _ models
consensus predictions Chemicals e = \
for 1000s of chemicals i Exposure o v\\ :
within the Systematic T .
. , Data 2 f Chemicals

Empirical Evaluation Datacetl c|
of Models (SEEM) | YIEXEEW = Available Exposure Predictors
(Wambaugh et al., 2013 Dafaseil “Madal 0 g

H - ’ o000 MOdeI 2
2014; R ., 2018

ing etal, 2018) Evaluate Model Performance

and Refine Models

[EZEIXEN Office of Research and Development Wambaugh et al., 2018
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SEEM3 Collaboration

Environm ental Protection Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-
gency
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Arnot Research & Consulting
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Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All

Reporting (CDR) (2015)

Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 far field Industrial and
Pollutants (2017) Pesticide

EPA Pesticide Reregistration Eligibility Documents Wetmore et al. (2012, 2015) 239 far field Pesticide
(REDs) Exposure Assessments (Through 2015)

United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 far field Industrial

Environmental Toxicology and Chemistry toxicity model
(USEtox) Industrial Scenario (2.0)

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide
Risk Assessment IDentification And Ranking (RAIDAR) Arnot et al. (2008) 8167 far field Pesticide
far field (2.02)
EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 far field Industrial and
Throughput (SHEDS-HT) near field Direct (2017) Pesticide
SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential
Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 615 Residential
(2016,2017)
USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary

Ernstoff et al. (2017)

Office of Research and Development Ring et al., 2018
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SEEM3: Pathway-Based Consensus Modeling

107 R?=0.816

Pathway(s)
Dietary, Pesticide, Industrial
Dietary, Residential
Dietary, Residential, Industrial
% Dietary, Residential, Pesticide
10—3 g %/ Dietary, Residential, Pesticide, Industrial
B |ndustrial
#* Pesticide
A Pesticide, Industrial
Residential
Residential, Industrial
Residential, Pesticide
Residential, Pesticide, Industrial

Consensus Model Predictions

107"

107°

107>

SEEM3 consensus model provides estimates of
human median intake rate (mg/kg/day) for
nearly 500,000 chemicals via the CompTox
Chemicals Dashboard
(http://comptox.epa.gov/dashboard)

SEEM3 first predicts relevant exposure pathways
from chemical structure — model predictions are
then weighted according to the models’ abilities
to explain NHANES data

We rely on pathway determinations from CPDat

We rely on NHANES biomonitoring data
® 2014 FIFRA Scientific Advisory Panel
identified need for broader sets of
evaluation data

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
[EZEIXEN Office of Research and Development

Ring et al., 2018
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SEPA EcoSEEM Metamodel for Surface

United States

s e \ANater Chemical Concentrations

£ o =
= {..F.,_I ] 3 b
LR I
% 4
Y -
_ ammgy .
F 4 Ny
' A
- .
B o
Vi B | »
] —4
) .: 7 4

Release (loading) and EcoSEEM USGS/EPA water
fate predictors metamodel monitoring data

Structural
features

Chemical-

specific =
information
(0) (p) (m) ()
Sayre et al, n Ny
in preparation In y.= m0+z Z m In (Ijipki)

[EEEIXEN Office of Research and Development j=1 k=1 Slide from Risa Sayre

Fate and transport models

Predicted national concentrations
1
i
Surface water concentrations

Production
volume data
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Exposure NAM
Class Description Traditional Approach

New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. . . High throughput methods using in vitro data
S -

Measurement
Toxicokinetics
Descriptors
Machine Learning

: - Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g naking p e , c o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from ) .
_ , .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , , ® o o o - o
. ) on a per chemical basis
a prediction for a new chemical

\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

. e . Integration of exposure and other NAMs to
Prioritization . . :
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)
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In Vitro-In Vivo Extrapolation (IVIVE)

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals

Exposure

in vivo ’
TK data

Office of Research and Development

g

Internal Toxicodynamic
IVIVE

concentration

!

in vitro bioactive
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion )

Breen et al. (submitted)

N

Response

In vitro Bioactivity
Assay

Concentration

v



\e’UEESA In Vitro-In Vivo Extrapolation (IVIVE)

Environmental Protection
Agency

" Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
" Needed for anywhere from dozens to thousands of chemicals

Internal Toxicodynamic
IVIVE

concentration

In vitro Bioactivity
Assay

—~
-

in vitro bioactive
concentration

Response

Exposure W

Toxicokinetic model:

Concentration

in vivo ’ Absorption in vitro
TK data D|str|but'|on TK data
Metabolism ] ] ]
\_ Excretion ) Toxicokinetic
Office of Research and Development IVIVE

Breen et al. (submitted)

v



\elUEI?SA Reverse Dosimetry (IVIVE)

Environmental Protection
Agency

AEDCSS —

Median
1/C

ss,med

(mg/kg/day)

Administered Equivalent Dose

o
@
v

Steady-state Concentration (LM)
= in vitro Concentration

JEXELEN Office of Research and Development Breen et al. (submitted)



\QIUEESA Reverse Dosimetry (IVIVE)

Environmental Protection
Agency

AEDCSS —_

L

(V)]

o

-

40&; Monte Carlo

© > Uncertainty .

Z 3 and Variability Median
S~

E E‘D 1/Css,med

T

o £

+ <

)

£ !

£ IX] ‘

< 0

Steady-state Concentration (LM)
= in vitro Concentration

JELEIZEN Office of Research and Development Breen et al. (submitted)



(o)
\"IEEI?SAIP | Reverse Dosimetry (IVIVE)
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Agency

AED, . =

55,95
Css,95
Less Sensitive
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Office of Research and Development Breen et al. (submitted)
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In vitro toxicokinetic data
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<EPA High Throughput Toxicokinetics (HTTK)
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Agency

In vitro toxicokinetic data

\
?- :: =) :: - {O -;:E‘.’L_
L
| B
3 44

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

JEEEIZEN Office of Research and Development



<EPA High Throughput Toxicokinetics (HTTK)

United States
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Agency

In vitro toxicokinetic data + generic toxicokinetic model

Inhaled Gas
Lung Tissue Q.
»| Lung Blood =i —
@ k- > ==
- 0;’ - 0;’ - 4’;’ - = Kidney Tissue
F=t=p L_ Qﬁﬁ Qg
Kidney Blood [e=—=]
° Gut Lumen z
m a Tood |2t
- Gut B 3
B = g =
ey ° @
l = ; 2
7 Liver Tissue &
1 )
_ iver Blood
i Lom o | = = e
P ., 0 d . 9 =gl
= ) I -4 b of Body
Body Blood Q | |

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

JEEEIZEN Office of Research and Development



<EPA High Throughput Toxicokinetics (HTTK)

Environmental Protection
Agency

In vitro toxicokinetic data + generic toxicokinetic model

W‘ - {,” - “’1" - ::f - =] ';f'} | idney Tissue
__ < <+ Kidney Blood 4&“5‘
% g + E; Gut Blood &%
‘ ‘ --------------------- & leerTlssu: ‘QQ &
AL AL AR AL g™ S
Rotroff et al. (2010) Wambaugh et al. (2015)
Wetmore et al. (2012) Pearce et al. (2017)
Wetmore et al. (2015) | Rln.g et al. (2017)
Wambaugh et al. (2019) Linakis et al. (2020)

JEEEIXEN Office of Research and Development



<EPA High Throughput Toxicokinetics (HTTK)

United States
Environmental Protection
Agency

In vitro toxicokinetic data + generic toxicokinetic model
= high(er) throughput toxicokinetics

Inhaled Gas
Lung Tissue Q.
»| Lung Blood =i —
@ @ @
w - °@° - w@o - ﬂ’@@ - B 51 Qe Kidney Tissue
T < Kidney Blood QQAE"“‘
B8l | GutLumen z
2 a Tood |z
-] s % 2
= ]
| = 2
R 3 g.
I 18 el
: Nomh o mh| A - Qe
1 2 3 %" 52§ i =
1ed T == e
dy Blood || |

Wambaugh et al. (2015)

Rotroff et al. (2010)

Wetmore et al. (2012) — h ttk Pe:.rce e: a:. ggi;i

Wetmore et al. (2015) Ing et al.
1 Linakis et al. (2020)

Wambaugh et al. (2019)
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Open-Source Tools and Data for HTTK
https://CRAN.R-project.org/package=httk

R CRAN - Package httk

< c

B oApps (B

LI

@ cran.r-project.org/web/packages/httk/index.html

Confluence (8! CompTox Dashboard @ Article Request @ Absence Request % Travel Forms W Bitbucket \"-;-

A EHP

httk: High-Throughput Toxicokinetics

Change Password

O X

Q@ * Oo»@
@ Famas

»

Generic models and chemical-specific data for simulation and statistical analysis of chemical toxicokinetics
Pearce et al. (2017) <doi:10.18637/js5.v079.i04>, Chemical-specific in vitro data have been obtained from r
experiments. Both physiologically-based ("PBTK") and empirical (for example, one compartment) "TK" mi
parameterized with the data provided for thousands of chemicals, multiple exposure routes, and various speg
of systems of ordinary differential equations which are solved using compiled (C-based) code for speed. AN
included, which allows for simulating human biological variability (Ring et al., 2017 <doi:10.1016/j.envint.
propagating parameter uncertainty. Calibrated methods are included for predicting tissue:plasma partition cg
distribution (Pearce et al.. 2017 <d0i:10.1007/s10928-017-9548-7==). These functions and data provide a set
vivo extrapolation ("IVIVE") of high throughput screening data (for example, Tox2 1, ToxCast) to real-worlg
dosimetr}; (also kﬂov&"n as 1'RTK1'\ MK =Anai- 10 1TNO2 rrawont 1T 120

(A atrmnara at al

Version: 2.03 d I d 1 0 7 1/ t h

Depends: R(=2.10) Own Oa S mon

Imports: deSolve, msm, dara.table, Survey, MvINorm, IrUNCOOFM, STats, grapnics, UTilS, Magritr, P

Suggests: ggplot?, knitr, rmarkdown, R.rsp, GGally, gplots, scales, EnvStats, MASS, RColorBrey
classInt, ks, stringr, reshape. reshape2. gdata, viridis, CensRegMod, gmodels. colorspad
dplvr, foreats, smatr, gtools, gridExtra

Published: 2020-09-25

Author: John Wambaugh [aut, cre], Robert Pearce [aut]. Caroline Ring [aut]. Greg
Sfeir [aut], Matt Linakis [aut], Jimena Davis [ctb], James Sluka [ctb], Nisha Si
Wetmore [ctb], Woodrow Setzer [ctb]

Maintainer: John Wambaugh <wambaugh.john at epa.gov=

R package “httk”

Open source, transparent, and peer-
reviewed tools and data for high
throughput toxicokinetics (httk)

* Available publicly for free statistical
software R

*  Allows in vitro-in vivo extrapolation
(IVIVE) and physiologically-based
toxicokinetics (PBTK)

*  Human-specific data for 987 chemicals

Described in Pearce et al. (2017)

RuoRennrts- httna-//oithith cam/TISFPA/CamnTav-Fynnl act_httl



https://cran.r-project.org/package=httk

o EPA Toxicokinetics NAMs: In Vitro Measurements and Generic
hId K PBTK Models

Environmental Protection
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SEPA In Vivo TK Database

Jhited States https://github.com/USEPA/CompTox-PK-CvTdb

Environmental Protection
Agency

" EPA has developed a public database of concentration S

vs. time data for building, calibrating, and evaluating TK expired ai
models ;\
442 147

48
193

" Curation and development ongoing, but to date
includes:

" 198 analytes (EPA, National Toxicology Program,
literature)

plagsma

® Routes: Intravenous, dermal, oral, sub-cutaneous, 103
and inhalation exposure other: 12 7

11 /]
36 10
" Standardized, open source curve fitting software

invivoPKfit used to calibrate models to all data: adipose T

feces 4 1
1 urine 59 14

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit \

re et al. (202
JEEEXEY Office of Research and Development Sayre et al. (2020)


https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
https://github.com/USEPA/CompTox-PK-CvTdb

EPA

United States
Environmental Protection
Agency

" USAF and EPA developed generic gas inhalation
physiologically-based toxicokinetic (PBTK)

model

" Evaluated HTTK with CvTdb: 142 exposure
scenarios across 41 volatile organic chemicals
were modeled and compared to published in

vivo data for humans and rat

" R?was 0.69 for predicting peak concentration

" R?was 0.79 for predicting time integrated
plasma concentration (Area Under the Curve,

AUC)

Office of Research and Development

Log(Observed AUC)

i

=

Developing Models with the CvT Database

Tetrahydrofuran Human EB

Pyrene Rat BL *

Species
= Owverall

Human
— Rat

Pyrene Rat BL

*

* Decane Rat BL

~—2H-Perfluoropropane Human VBL

~2H-Perflucropropane Human VBL
*Furan Rat BL
* 2H-Perfluoropropane Human VBL
*2H-Perfluoropropane Human VBL
Regression slope- 0.97
Regression R*2- (.79
Regression RMSE: 1.49
RMSE (v=_ ldentity): 0.55

* Furan Rat BL

0 2 4
Log(Simulated AUC)

Linakis et al. (2020)
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Agency

Exposure NAM
Class Description Traditional Approach

New techniques including screening analyses
Measurements capable of detecting hundreds of chemicals Targeted (chemical-specific) analyses - e e o °
present in a sample

. .. High throughput methods using in vitro data . : :
Toxicokinetics : e , . : Analyses based on in vivo animal studies e - ° °
to generate chemical-specific models

Measurement
Toxicokinetics
Descriptors
Machine Learning

Models capable of making predictions for Models requiring detailed, chemical- and
HTE Models g naking p e , c o - o
thousands of chemicals scenario-specific information
Chemical Informatic approaches for organizing chemical Tools targeted at single chemical o
Descriptors information in a machine-readable format analyses by humans
Statistical approaches that use the data from ) .
_ , .. Comparison of model predictions to data
many chemicals to estimate the uncertainty in , , ® o o o - o
. ) on a per chemical basis
a prediction for a new chemical

\“ET L EREEETG T80 Computer algorithms to identify patterns Manual Inspection of the Data e o ° -

Integration of exposure and other NAMs to
identify chemicals for follow-up study

Office of Research and Development Wambaugh et al., (2019)

Prioritization Expert decision making 3 0008|080
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10 - i $

IEEEZEN Office of Research and Development

Chemical Prioritization NAMs

High throughput in vitro
screening can estimate doses
' needed to cause bioactivity

é' E| ﬁ (for example, Wetmore et al., 2015)
. $! '! . g‘ !

LA 1

D
>
(7]
o)
Q
x -
L
'c -
. .
% 1 $ ﬁ :  ° é‘ =] é
3. flafldrer] ol e T T e -
s = $ é éﬁ E Sl R Sl EAR Exposure intake rates can be
5 § 102 1| [F- : ' inferred from biomarkers
§ o 1 / (for example, Ring et al., 2018)
uo -—
@% i mg/kg BW/day
2E
2 10 Potential
g. Hazz?rdfr(?m
L in vitro with
L®) Reverse
% Toxicokinetic
g - - ' - - - . ' - ) Potentiasl
15 Chemicals Monitored by CDC NHANES Exposure
(I Rate

Lower Medium Higher

Ring et al. (2017) Risk Risk  Risk



\9’ EPA Life-stage and Demographic Specific Predictions

United States 24-d

. . Naphthalene
Environmental Protection Titiosan
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SERA Outlook

Environmental Protection
Agency

" In ExpoCast we develop models and perform experiments for both
exposure and dosimetry (toxicokinetics) Ts CA 2-0

A New Era in
Chemical Risk Management

After decades of dysfunction, the Toxic Substances Control Act has been

" HTTK (high throughput toxicokinetics) includes a suite of peer-reviewed
models for toxicokinetics that can be parameterized for nearly one e sl s e
thousand chemicals
" Currently adding new models (aerosol, dermal, human gestational)
" Adding new structure-based predictors for data that are currently
measured in vitro

" SEEM (systematic empirical evaluation of models) is a consensus meta-
modeling framework for exposure
" Trained to monitoring data (developing more)
" Trained to chemical use data (developing more)

" Human developed, ecological and occupational in progress . x
Schmidt (2016)

Office of Research and Development
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