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• Measurement data needed to ensure chemical safety
• Characterize risk
• Regulate use & disposal
• Manage human & ecological exposures
• Ensure compliance under federal statutes

Why Does EPA Need Measurement Data?
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Challenges

• High-quality exposure data are unavailable for most chemicals

• Measurement data traditionally generated using “targeted” methods

• Targeted analytical methods:

- Require a priori knowledge of chemicals of interest
- Produce data for few selected analytes (10s-100s)
- Require standards for method development & compound quantitation
- Are blind to emerging contaminants
- Can’t keep pace with the needs of 21st century chemical safety evaluations
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General NTA Workflow
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Quantitative NTA (qNTA) is a Multi-Step Process

McCord, J. P., Groff, L. C., and Sobus, J. R. Environ. Int. Submitted.

Current Goal*

Future Goal*
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• Ten synthetic mixtures with 1269 chemical substances
• Each contains between 95 and 365 unique substances in DMSO
• Analyzed with LC-QToF high-resolution mass spectrometry (HRMS) 
• 3 dilutions per mixture; chemical subset with replicate measures
• 530 compounds identified in ESI+; 267 in ESI-
• Aim: develop and evaluate qNTA methods using ENTACT NTA data

EPA’s Non-Targeted Analysis Collaborative Trial as an NTA 
Dataset

Sobus, J. R., et Al. Anal. Bioanal. Chem. (2019) 411:835–851. 
Ulrich, E. M., et Al. Anal. Bioanal. Chem. (2019) 411:853–866.
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Substances Spiked in ENTACT Mixtures (n = 1269)

Correctly Identified 
Chemicals 

(n = 530 [+]; 237 [-])

Subset with Repeat 
Measures 

(n = 73 [+]; 10 [-])

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
From Linear Fit

Given 
Yobs

Benchmark Method:
Inverse Prediction Using Targeted Calibration Curves

Given 95% 
Pred. Interval

Prediction Error for Automated Analysis = ???

• Transform intensity & conc. data into log-log space 
• Generate calibration curves for each chemical
• Fit  targeted (true) concentration

• 95% Prediction Interval  prediction error bound via 
inverse prediction

• Use to compare to qNTA estimated concentrations

�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.975𝐶𝐶𝐶𝐶
From Lower PI Bound 
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Quantitative NTA (qNTA) is a Multi-Step Process

McCord, J. P., Groff, L. C., and Sobus, J. R. Environ. Int. Submitted.
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Simplest qNTA Model Uses Surrogate Response Factors

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹𝐶𝐶𝐹𝐹 (𝑅𝑅𝐹𝐹) =
𝑂𝑂𝑂𝑂𝑅𝑅. 𝐼𝐼𝐶𝐶𝐹𝐹𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼𝐹𝐹𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐾𝐾𝐶𝐶𝐶𝐶𝐾𝐾𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑃𝑃𝐹𝐹𝑅𝑅𝑃𝑃𝐼𝐼𝐶𝐶𝐹𝐹𝑅𝑅𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑈𝑈𝑈𝑈 =
𝑅𝑅𝐹𝐹

𝑂𝑂𝑂𝑂𝑅𝑅. 𝐼𝐼𝐶𝐶𝐹𝐹𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼𝐹𝐹𝐼𝐼𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑈𝑈𝑈𝑈

“Single Surrogate”  known chemical spiked 
at known conc. with observed intensity

“Unknowns”  tentatively identified 
chemicals with unknown conc. and observed 
intensities

Single
Surrogate

Unknowns



• Perform five-fold cross-validation to split 
ENTACT chemicals into training/test sets

• Bootstrap resample training set RF 
distribution many times (10k)

• Calculate 2.5th percentile RF for each 
resampled distribution

• Take average over 10k resamples and five 
CV folds to get �𝑅𝑅𝐹𝐹0.025

• Given �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅 = 𝑂𝑂𝑂𝑂𝑅𝑅. 𝐼𝐼𝐶𝐶𝐹𝐹𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼𝐹𝐹𝐼𝐼/𝑅𝑅𝐹𝐹

• Using 𝑅𝑅𝐹𝐹 = �𝑅𝑅𝐹𝐹0.025 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.975𝑅𝑅𝑅𝑅

Bounding qNTA Predictions 
Using Bootstrapped RF Distributions
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Prediction Error for RF-Estimated Concentrations vs. 
Calibration Curve Estimates

• Use cal. curve error quotient as benchmark:

• 50th percentile: 1.6× over-est.
• 95th percentile: 3× over-est.

• EQ �𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝑹𝑹𝑹𝑹 percentiles:

• 50th percentile: 33× over-est.
• 95th percentile: 204× over-est.
• 1st – 2.5th percentile: under-est!!

• RF method is default qNTA strategy, given 
ease of implementation

ESI+

𝐸𝐸𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹 𝑄𝑄𝑄𝑄𝐶𝐶𝐹𝐹𝐼𝐼𝑅𝑅𝐶𝐶𝐹𝐹 =
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.975
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
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Improving Concentration Estimates Using Ionization 
Efficiency Model Predictions

• Use physicochemical descriptors to predict 
ionization efficiency (IE) for each ENTACT 
chemical

• Beneficial statistical relationship between 
RF and predicted IE

• Predicted IE and RF were transformed to 
meet the assumptions of linear regression

𝐹𝐹𝑅𝑅𝐹𝐹 = (𝑅𝑅𝐹𝐹𝜆𝜆 − 1)/𝜆𝜆
Box-Cox Transform Equation
𝜆𝜆𝐸𝐸𝑆𝑆𝐸𝐸+ = 0.285,  𝜆𝜆𝐸𝐸𝑆𝑆𝐸𝐸− = −0.106

Liigand, J., Wang, T., Kellogg, J., Smedsgaard, J. Cech, N., and Kruve, A. Sci Rep 10, 5808 (2020).
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IE-Predicted Response Factors Using Linear Mixed-
Effects Modeling

• Repeat five-fold cross-validation procedures

• Bootstrap resample training set tRF vs. log(IE) 
distribution many times (10k)

• Calculate linear mixed model regression 
coefficients on the resampled distributions

• Determine prediction interval for each CV fold

• Given predicted log(IE), we can calculate 
�𝐹𝐹𝑅𝑅𝐹𝐹0.025𝐼𝐼𝐼𝐼 and back-transform to �𝑅𝑅𝐹𝐹0.025𝐼𝐼𝐼𝐼

• �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.975𝐼𝐼𝐼𝐼 = 𝑂𝑂𝑂𝑂𝑅𝑅. 𝐼𝐼𝐶𝐶𝐹𝐹𝑅𝑅𝐶𝐶𝑅𝑅𝐼𝐼𝐹𝐹𝐼𝐼/�𝑅𝑅𝐹𝐹0.025𝐼𝐼𝐼𝐼
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Prediction Error Across qNTA Methods

ESI+

𝐸𝐸𝐹𝐹𝐹𝐹𝐶𝐶𝐹𝐹 𝑄𝑄𝑄𝑄𝐶𝐶𝐹𝐹𝐼𝐼𝑅𝑅𝐶𝐶𝐹𝐹 =
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.975
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

• Use cal. curve error quotient as benchmark:

• 50th percentile: 1.6× over-est.
• 95th percentile: 3× over-est.

• EQ �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0.975𝑅𝑅𝑅𝑅 percentiles:

• 50th percentile: 33× over-est.
• 95th percentile: 204× over-est.

• EQ �𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗𝑰𝑰𝑰𝑰 percentiles:

• 50th percentile: 8× over-est.
• 95th percentile: 47× over-est.
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• NTA is an integral tool for keeping pace with the discovery of chemicals of emerging concern

• qNTA provides a means to estimate bounded concentrations, with high statistical confidence, for chemicals 
lacking authentic standards

• Interpretation: “There is a 95% probability that the true concentration lies between X1 lower bound and X2upper bound.”

• Upper-bound concentration estimates will be used for provisional chemical safety screenings 

• Using chemical specific calibration curves with automated NTA data processing, upper-bound concentration 
estimates are generally within ~5× of the true concentration (ESI+ results)

• Using a default response factor estimation method, upper-bound concentration estimates are generally 
within ~200× of the true concentration (ESI+ results)

• Using mixed model regressions of response factor vs. predicted ionization efficiency, upper-bound 
concentration estimates are generally within ~50× of the true concentration (ESI+ results)

• Using any of these methods, the upper bound concentration estimate will be LOWER than the true value 
~2.5% of the time

17 of 19 

Conclusions



Future Activities
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• Apply qNTA models to existing NTA sample datasets generated via GC & LC 
platforms (consumer products, environmental media, biological samples)

• Apply sample extraction data to extend bounded concentrations in prepared 
solution upward toward media concentrations

• Develop risk-prioritization strategies that combine qNTA media predictions 
with estimated thresholds of human and ecological toxicity

• Examine platform transferability for qNTA models

• Incorporate into EPA NTA WebApp
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Questions?

The views expressed in this presentation are those of the 
author and do not necessarily represent the views or policies 

of the U.S. Environmental Protection Agency.

Groff.Louis@epa.gov
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