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US EPA’s ExpoCast Project: 
New Approach Methodologies for Exposure Forecasting

Lovell and Hegstad (2009): “Obama's FY10 Budget Includes Increased Toxicology”:

“Investment in 21st century exposure science is now required to 
fully realize the potential of the NRC vision for toxicity testing.” 

Cohen Hubal (2009)

Wambaugh et al., (2019)

Since 2010:
• 45 peer-reviewed publications
• 5 STAR grants awarded
• 3 Federal research contracts 

(SWRI and Battelle)
 Funding allows for 

complementary exposure 
predictions from ExpoCast, 
which is slated to be    
launched in FY10

 Predict the impact of chemicals 
on the human body using data 
from ToxCast

Thomas et al. (2019)
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• The U.S. National Research Council (1983) identified 
chemical risk as a function of both inherent hazard 
and exposure

• Therefore, high throughput risk prioritization needs:
1. High throughput hazard characterization                            

(Dix et al., 2007, Collins et al., 2008)
2. High throughput exposure forecasts                       

(Wambaugh et al., 2013, 2014)
3. High throughput toxicokinetics (that is, dose-

response relationship) linking hazard and 
exposure                                                          
(Wetmore et al., 2012, 2015)

Chemical Risk = Hazard x Exposure
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The Margin Between Exposure and Hazard

Aylward and Hays (2011) 

The five chemicals (as of 2011) with plasma biomonitoring AND ToxCast data… what do we do about the other 1000’s?

Estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Bio-monitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+

Range of bioactive concentrations 
across ToxCast assays
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NAMs for Exposure Science

 There are at least 10,000 chemicals produced, used in commerce, and potentially present 
in the environment
 Traditional methods are too resource-intensive to address all of these
 New Approach Methodologies (NAMs) have the potential to address these gaps

 The tools to characterize both toxicity and exposure have evolved significantly in the past 
decade

 NAMs for exposure science are being developed 
to enable risk assessors to more rapidly address 
public health challenges and chemical 
regulation
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Potential 
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High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(for example, Wetmore et al., 2015)

Exposure intake rates  can be 
inferred from biomarkers
(for example, Ring et al., 2018)
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Most Chemicals Lack Data on Exposure and 
Toxicokinetics

Exposure

Hazard

High Throughput
Risk 

Prioritization

“Translation of high throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 

Recent advances in high throughput 
toxicity assessment, notably the ToxCast 
and Tox21 programs… and in high 

throughput computational exposure 
assessment [ExpoCast] have enabled 
first-tier risk-based rankings of

chemicals on the basis of margins 
of exposure” -

NASEM (2017)

National Academies 
of Sciences, 
Engineering, and 
Medicine (NASEM)

In order to perform risk-based ranking we need data on hazard, 
toxicokinetics, and exposure… 

Toxicokinetics
(easier to deal with than toxicodynamics)
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Measurements
New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics 
High throughput methods using in vitro data to 
generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models
Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information

• • - •

Chemical Descriptors
Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical analyses by 
humans

- •

Evaluation
Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data on a 
per chemical basis

• • • • - •

Machine Learning
Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization
Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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Expert decision making • • • • • •

NAMs for Exposure Science

Wambaugh et al., (2019)
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HTTK:  A NAM for Exposure

 To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al., 
2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, 
et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example, 
Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017a)
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“Among competing hypotheses, the one 
with the fewest assumptions should be 
selected.” William of Occam

“While Occam's razor is a useful tool in the 
physical sciences, it can be a very 
dangerous implement in biology. It is thus 
very rash to use simplicity and elegance as 
a guide in biological research. “
Francis Crick

“With four parameters I can fit an 
elephant, and with five I can make him 
wiggle his trunk.”
John von Neumann

Lex Parsimoniae
“Law of Parsimony”

Figure from Anran Wang

Over-fitting

Linear
function

Y

X
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Fit for Purpose IVIVE

Bessems et al. (2014)

 We choose to make the complexity of the 
model and the number of physiological 
processes appropriate to decision context

 Bessems et al. (2014): We need “a first, 
relatively quick (‘Tier 1’), estimate” of 
concentration vs. time in blood, plasma, 
or cell

 They suggested that we neglect active 
metabolism – thanks to in vitro 
measurements we can now do better

 We do neglect transport and other 
protein-specific phenomena
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Building Confidence in TK Models

Predicted Concentrations
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Specific 
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Cohen Hubal et al. (2018)
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can compare the predictions to in vivo measured data
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 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

Cohen Hubal et al. (2018)
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties

Cohen Hubal et al. (2018)
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Building Confidence in TK Models

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
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in model implementation 
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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HTTK on the CompTox 
Chemicals Dashboard

 The CompTox Chemicals Dashboard provides Css,95 values for >1000 chemicals

https://comptox.epa.gov/dashboard/

 We use EPA’s R package “httk” to provide 
IVIVE predictions

 The value reported is calculated assuming a 
1 mg/kg/day dose rate

 We give the upper 95th percentile of the 
calculated values based on a Monte Carlo 
simulation of human variability and 
uncertainty

https://comptox.epa.gov/dashboard/
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• Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been 
developed so far that can run that fast

• ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past 
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring 
concentration for toxicokinetics or exposure requires chemical-specific methods…

What is “High Throughput”?

Kaewkhaw et al. (2016)

Positive
Control

Titration of 
Potential Hits
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• Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been 
developed so far that can run that fast

• ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past 
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring 
concentration for toxicokinetics or exposure requires chemical-specific methods…

• ExpoCast: Ring et al. made in silico predictions for ~480,000 chemicals from structure, but based on 
NHANES monitoring for ~120 chemicals
• Quantitative non-targeted analysis (NTA) may eventually provide greater evaluation data to 

reduce uncertainty

• HTTK: In vitro data on 944 chemicals collected for humans, starting with Rotroff et al. (2010)
• Work continues to develop in silico tools, for example Sipes et al. (2016)

Our work is not done…

What is “High Throughput”?
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Risk = Hazard x Exposure

Exposure

Hazard

High Throughput
Risk 

Prioritization

High throughput screening (Dix et al., 
2006, Collins et al., 2008) + in vitro-in 
vivo extrapolation (IVIVE, Wetmore et 
al., 2012, 2015) can predict a dose 
(mg/kg bw/day) that might be 
adverse

Toxicokinetics

NRC (1983)
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Risk = Hazard x Exposure

Exposure

Hazard

High Throughput
Risk 

Prioritization

High throughput models exist to 
make predictions of exposure via 

specific, important pathways such 
as residential product use and diet

Need methods to forecast exposure for 
thousands of chemicals 
(Wetmore et al., 2015)

Toxicokinetics

NRC (1983)

High throughput screening (Dix et al., 
2006, Collins et al., 2008) + in vitro-in 
vivo extrapolation (IVIVE, Wetmore et 
al., 2012, 2015) can predict a dose 
(mg/kg bw/day) that might be 
adverse



23 of 59 Office of Research and Development

Human

Figure from Kristin Isaacs

Exposure is a Complex System

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

Residential Use
(for example ,flooring)

TARGET

MEDIA

Environmental 
Release

Other Industry

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(for example, surface cleaner)

Ecological
Flora and FaunaHuman



24 of 59 Office of Research and Development

The Exposure Event is Often Unobservable

Indoor Air, Dust, Surfaces

Consumer
Products and 

Durable Goods

Food

near field
Direct

near field 
Indirect Dietary far field

Residential Use
(for example ,flooring)

TARGET

MEDIA

EXPOSURE 
(MEDIA + TARGET)

Ecological

Environmental 
Release

Other Industry

Occupational

Waste

Drinking 
Water

Outdoor Air, Soil, Surface 
and Ground Water

USE and RELEASE

Chemical Manufacturing and Processing

Direct Use
(for example, surface cleaner)

Ecological
Flora and FaunaHuman

Figure from Kristin Isaacs

 Can try to predict exposure by characterizing pathway
 Some pathways have much higher average exposures: In home “Near field” sources significant (Wallace, et al., 1987)
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What Do We Know About Exposure?
Biomonitoring Data

 Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey 
(NHANES) provides an important tool for monitoring public health

 Large, ongoing CDC survey of US population: demographic, body measures, medical exam, 
biomonitoring (health and exposure), …

 Designed to be representative of US population according to census data

 Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

 Includes measurements of:

 Body weight
 Height
 Chemical analysis of blood and urine
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What Do We Know About Exposure?
Exposure Models

 Any model, including those for exposure, capture knowledge and a hypothesis of how the world works

 EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within government, 
industry, academia, and the general public with assessing exposure
 Includes many, many models (https://www.epa.gov/expobox)

 These models can be coarsely grouped (Arnot et al., 2006) into:
 Models that describe “near field” sources that are close to the exposed individual (consumer or 

occupational exposures) 
 Models that describe “far field” scenarios wherein individuals are exposed to chemicals that were 

released or used far away (ambient exposure)
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Everyone Uses Models
 Toxicology has long relied upon model animal species

 People rely on mental models every day 
 For example, repetitive activities like driving home from work

 Mathematical models offer some significant advantages:
 Reproducible
 Can (and should) be transparent

 …with some disadvantages:
 Sometimes reality is complex
 Sometimes the model doesn’t always work well
 How do we know we can extrapolate?

 …that can be turned into advantages:
 If we have evaluated confidence/uncertainty and know the “domain 

of applicability” we can make better use of mathematical models

USES MODELS



28 of 59 Office of Research and Development

Fit for Purpose Models

 A “fit for purpose” model is an abstraction of a complicated problem that allows us to reach a decision.

“Now it would be very remarkable if any system existing in the real world could be exactly represented 
by any simple model. However, cunningly chosen parsimonious models often do provide remarkably 
useful approximations… The only question of interest is ‘Is the model illuminating and useful?’”
George Box

 A fit for purpose model is defined as much by what is omitted as what is included in the model.

 We must accept that there will always be areas in need of better data and models – our knowledge will 
always be incomplete, and thus we wish to extrapolate.

 How do I drive to a place I’ve never been before?
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29

How to Make Good Forecasts
Adapted from Nate Silver

Orrin Pilkey & 
Olinda Pilkey-Jarvis (2007)
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30

How to Make Good Forecasts
Adapted from Nate Silver

1) Think probabilistically (especially, Bayesian): We use an 
approach that evaluates model performance systematically 
across as many chemicals (and chemistries) as possible

2) Forecasts change: Today’s forecast reflects the best 
available data today but we must accept that new data and 
new models will cause predictions to be revised

3) Look for consensus: We evaluate as many models and 
predictors/ predictions as possibleOrrin Pilkey & 

Olinda Pilkey-Jarvis (2007) Nate Silver (2012)

In Nate Silver’s terminology:
a prediction is a specific statement
a forecast is a probabilistic statement
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Ensemble Predictions
 We can use ensemble methods to make more stable models and characterize uncertainty

Hurricane Path Prediction is an 
Example of Integrating Multiple Models

 “Ensemble methods are learning 
algorithms that construct a set of 
classifiers and then classify new data 
points by taking a (weighted) vote of their 
predictions.” Dietterich (2000)

 Ensemble systems have proven 
themselves to be very effective and 
extremely versatile in a broad spectrum of 
problem domains and real-world 
applications (Polikar, 2012)

 Ensemble learning techniques in the 
machine learning paradigm can be used 
to integrate predictions from multiple 
tools. (Pradeep, 2016)
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Evaluation NAMs:  The SEEM Framework

 We use Bayesian methods to incorporate multiple models into consensus predictions for 
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)
(Wambaugh et al., 2013, 2014; Ring et al., 2018)
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Evaluate Model Performance
and Refine Models

Dataset 1
Dataset 2…
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Inference Different 

Chemicals

Available Exposure Predictors
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33

SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathway(s)

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 far field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 far field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 far field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
far field (2.02)

Arnot et al. (2008) 8167 far field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) near field Direct (2017)

Isaacs (2017) 7511 far field Industrial and 
Pesticide

SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 DietaryRing et al. (2018)
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34

SEEM3: Pathway-Based Consensus Modeling

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
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Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical-to-chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume

Heuristics of Exposure
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Correlation is Not Causation

 Wambaugh et al. (2014) found that “pesticide inerts” 
had higher than average levels in biomonitoring data, 
while “pesticide actives” had lower than average

 In World War II, the Royal Air Force (UK) wanted to 
armor planes against anti-aircraft fire
 Initial proposal was to place armor wherever 

bullet holes were most common
 Mathematician Abraham Wald pointed out that 

they were looking at the planes that had returned
 See Drum, Kevin (2010) “The Counterintuitive 

World”

 Pesticide inerts have many other uses, but there are 
more stringent reporting requirements for pesticides
 Exposure is occuring by other pathways



37 of 59 Office of Research and Development

The Six Degrees of Kevin Bacon
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Kevin Bacon

Toxicokinetics

1984

1995

1992

1978
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Kevin Bacon

Toxicokinetics

1984
1990
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Michael B. Jordan

Toxicokinetics
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Connectedness to Michael B. Jordan

Frances McDormand 
Best Actress Winner 2018

Creed
Stallone & Jordan

Expendables 
Willis & 

Sylvester Stallone

Hail Caesar
McDormand &

Channing Tatum

GI Joe: Retaliation
Tatum & Bruce Willis
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Connectedness to Michael B. Jordan

Marlon Brando
Best Actor 1954 and 1972
Died 2004

Black Panther
Boseman & JordanAvengers: 

Infinity War 
Paltrow & 
Chadwick 
Boseman

Superman
with Gene Hackman

The Royal Tenenbaums
Hackman & Gwyneth Paltrow
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Small World Networks
Watts and Strogatz (1998) Collins and Chow (1998)

Travers and 
Milgram (1977):

296 arbitrary 
individuals in 
Nebraska and 
Boston were 

asked to give a 
letter to an 

acquaintance 
most likely to 
help it reach a 

target person in 
Massachusetts. 
64 reached the 
target person, 

average number 
of intermediaries 

was 5.2
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Complex is Not the Same as Random

Watts and Strogatz (1998)
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 But we don’t always know how chemicals are 
used:

“In particular, the assumption that 100% of 
[quantity emitted, applied, or ingested] is being 
applied to each individual use scenario is a very 
conservative assumption for many compound / 
use scenario pairs.”

Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models

 Wambaugh et al. (2014) found that “pesticide inerts” had higher than average levels in biomonitoring 
data, while “pesticide actives” had lower than average

 Pesticide inerts have many other uses, but there are more stringent reporting requirements for pesticides
 Exposure is occuring by other pathways
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Chemical Use Identifies Relevant Pathways

>2000 chemicals with Material Safety Data Sheets 
(MSDS) in CPCPdb (Goldsmith et al., 2014)
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Some pathways have 
much higher average 

exposures!

near field Dietary far field EcologicalOccupational

Near field sources have been known to be important at least since 1987 –
see Wallace, et al.
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How Can we Know Chemical Use?
Chemical Property NAMs
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chemical composition

CPDat
Functional 
Use Data

https://comptox.epa.gov/dashboardSlide from Kristin Isaacs
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CPCPdb: Material Safety Data Sheets

XXXXXX
XXXXXXXXXX
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Goldsmith et al. (2014):
• ~20,000 

product-
specific 
Material 
Safety Data 
Sheets (MSDS) 
curated

• ~2,400 
chemicals

Product-specific 
uses determined 
using web spider 
to click through 
categories (for 
example, home 
goods, bath 
soaps, baby) to 
find each product
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How Can we Know Chemical Use?
Chemical Property NAMs

Broad “index” of chemical uses
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How Can we Know Chemical Use?
Chemical Property NAMs
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How Can we Know Chemical Use?
Chemical Property NAMs
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How Can we Know Chemical Use?
Chemical Property NAMs
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How Can we Know Chemical Use?
Chemical Property NAMs
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Broad “index” of chemical uses
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How Can we Know Chemical Use?
Chemical Property NAMs
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(for example, Wetmore et al., 2015)

Exposure intake rates  can be 
inferred from biomarkers
(for example, Ring et al., 2018)
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Ring et al. (2017)

Chemical Prioritization NAMs
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Life-stage and Demographic Variation in Exposure

 Wambaugh et al. (2014) made 
steady-state inferences of exposure 
rate (mg/kg/day) from NHANES data 
for various demographic groups

Change in Exposure 
Relative to Total Population

Change in Exposure (mg/kg bodyweight/day)

Ring et al. (2017)
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Life-stage and Demographic Variation in TK

 Ring et al. (2017) predicted change in 
plasma concentrations for a 1 mg/kg 
bw/day exposure for various 
demographic groups

Change in Toxicokinetics (µM/unit exposure)

Change in Toxicokinetics 
Relative to Total Population

Ring et al. (2017)
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Life-stage and Demographic Variation in Risk Priority

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population
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 Using demographic-specific 
toxicokinetics and exposure, we 
can calculate margin between 
bioactivity and exposure for 
various demographic groups
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Summary

 We need to know chemical hazard, exposure, and toxicokinetics 
to assess risk posed to the public health

 There are tens of thousands of chemicals in commerce in the 
environment that lack some of these data

 New approach methodologies (NAMs) are being developed to 
prioritize these existing and new chemicals for testing

 All data are being made public:
 The CompTox Chemicals Dashboard (A search engine for 

chemicals) http://comptox.epa.gov/dashboard
 R package “httk”: https://CRAN.R-project.org/package=httk

The views expressed in this presentation are those of the authors 
and do not necessarily reflect the views or policies of the U.S. EPA

High 
Throughput 

Exposure Rate 
Predictions

mg/kg BW/day

High 
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Toxicokinetics
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Higher
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http://comptox.epa.gov/
https://cran.r-project.org/package=httk
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ORD Facility in
Research Triangle Park, NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
•543 peer-reviewed journal articles in 2019

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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