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Overview

• Modeling exposures in the indoor (near-field) environment
• Challenges
• Strategies and recent advances

• From exposure to risk
• Integrating near-field exposure predictions with other pathways
• Tools for predicting internal exposures
• Risk-based prioritization
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From Source to Exposure Indoors

• Exposure is the contact between a 
receptor (human) and a chemical (carried 
by an environmental medium) 
• Many exposure metrics that describe 

the duration, intensity, and pattern
of contact

• Modeling exposure requires some 
estimate of concentrations in indoor 
media (e.g., air)
• Function of source, release, and fate 

and transport (as discussed in many 
other talks today)

• Exposure is also dependent on human  
behaviors and housing characteristics
• Exposure factors 
• Consumer habits and practices 

(product use patterns)

?
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Fit-for-Purpose Exposure Modeling Frameworks

Mechanistic 
description of the 
built environment 
and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across 
sources, routes, scenarios, 
chemicals 

Description of 
human behavior
or population
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Fit-for-Purpose Exposure Modeling Frameworks

Mechanistic 
description of the 
built environment 
and exposure 
processes, including 
temporal variability

Increasing Complexity

Level of aggregation across 
sources, routes, scenarios, 
chemicals 

Description of 
human behavior
or population

• Models of different levels of complexity have 
overlapping data needs

• They also share some universal challenges

SHEDS-HT, Isaacs et al., 2014

Li et al., 2018

FINE, Shin et al., 2015

Eichler and Little, 2020

EPA, 2019
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Challenges and Data Gaps Associated with 
Modeling Exposure 

• What are additional challenges beyond the inherent gaps associated with source, emission, and 
fate and transport characterization?

• Data accessibility
• It is difficult to identify existing data relevant to a given exposure scenario
• NAS 2017: “...most information is fragmented, incompletely organized, and not readily available or 

accessible …the full potential of the existing and emerging information for exposure-based and risk-
based evaluations cannot be realized.”

• Population variability
• Human behavior is complex, and surveys and field studies are expensive
• NAS 2012: Recommendation to “explore options for using data obtained on individuals and 

populations through market-based and product-use research to improve exposure information”
• Mixtures or co-Exposures

• NAS 2017: Assessing cumulative exposure and exposure to mixtures is a high-value activity, and 
“computational exposure methods will help to identify chemical mixtures to which people are 
exposed.”

• Model validation
• Data for validating predictions are often limited
• NAS 2017: Continued efforts to measure and estimate concentrations in multimedia sources—such 

as indoor air, indoor surfaces, dust, and consumer products—are required to address uncertainty in 
near-field exposures and pathways.

2012

2017



7 of 12 Office of Research and Development

Frameworks for Improving Data 
Organization and Model Parameterization

• Chemical frameworks

DSSTox Substance Identifier (DTXSID) 
Substance can be any single 
chemical, mixture, polymer

DSSTox Chemical Identifier (DTXCID) 

https://comptox.epa.gov/dashboard

Unique chemical structure

4,4'-(Propane-2,2-diyl)diphenol
Phenol, 4,4'-(1-methylethylidene)bis-
80-05-7
BPA
4,4’-Propane-2,2-diyldiphenol
Phenol, 4,4'-(1-methylethylidene)bis-
4-06-00-06717
(4,4'-Dihydroxydiphenyl)dimethylmethane
2,2-Bis(4'-hydroxyphenyl) propane
2,2'-Bis(4-hydroxyphenyl)propane
2,2-BIS-(4-HYDROXY-PHENYL)-PROPANE
2,2-Bis(4-hydroxyphenyl)propane
2,2-Bis(p-hydroxyphenyl)propane
2,2-Di(4-Hydroxyphenyl) Propane
2,2-DI(4-HYDROXYPHENYL)PROPANE
2,2-Di(4-phenylol)propane
4,4'-(1-Methylethylidene)bisphenol
4,4'-Bisphenol A
4,4'-DIHYDROXYPHENYL-2,2-PROPANE
4,4'-isopropilidendifenol
4,4'-Isopropylidendiphenol
4,4'-Isopropylidene bisphenol
4,4-ISOPROPYLIDENE DIPHENYL
4,4'-Isopropylidenebis[phenol]
4,4'-isopropylidenediphenol
4,4'-Methylethylidenebisphenol
Bis(4-hydroxyphenyl)dimethylmethane
Bis(p-hydroxyphenyl)propane

+100 more
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Frameworks for Improving Data 
Organization and Model Parameterization

• Chemical frameworks
• Product frameworks

Isaacs et al., 2020
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{Chemical1, Chemical2…..Chemical 50}

Addressing Challenges with Novel Data Streams

• EPA Office of Research and Development entered a collaboration 
with the Nielsen company

• Nielsen provided consumer product purchasing data for 60,000 
U.S. households from their National Consumer Panel Study 
(“Homescan”)

• Purchasing data were integrated with CPDat ingredient data by 
Universal Product Code

• Analyses informed co-exposures and demographic differences in 
habits and practices 
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Addressing Challenges with Novel Data Streams

{Chemical1, Chemical8, Chemical 20}

• EPA Office of Research and Development entered a collaboration 
with the Nielsen company

• Nielsen provided consumer product purchasing data for 60,000 
U.S. households from their National Consumer Panel Study 
(“Homescan”)

• Purchasing data were integrated with CPDat ingredient data by 
Universal Product Code

• Analyses informed co-exposures and demographic differences in 
habits and practices 

• We identified all chemicals being introduced into homes within 
the same month (and thus had potential co-exposure)

• Used a data-mining technique (Frequent Itemset Mining) to 
identify frequently-occurring combinations of chemicals across 
households (broad group of chemicals and potential endocrine-
active chemicals)

• Were able to examine impact of demographics (race, household 
size, income, education) on frequent combinations
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Potential Endocrine Active Chemicals

• Here demographics and chemical sets 
are clustered to indicate the similarity 
of rankings of chemical combinations

• Cell color reflects relative prevalence of 
the chemical combination (rank across 
all prevalent combinations) for the 
demographic versus total population

• We could identify patterns in chemical 
co-occurrence 

• Examples of rank departures for certain 
demographics are highlighted

• Results can be used to prioritize 
chemicals for testing in in vitro systems

Addressing Challenges with Novel Data Streams
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 Targeted Analysis:
• We know exactly what we’re looking for 
• 10s – 100s of chemicals

 Non-Targeted Analysis (NTA) or Suspect Screening 
Analysis (SSA)
• We have no preconceived targets
• 1,000s – 10,000s of chemicals

 Can supplement and evaluate predicted concentrations 
in sources (e.g., consumer products), in indoor media, 
and human receptors (e.g., blood concentrations) 
• Occurrence 
• Prioritization of confirmation with standard 

targeted methods

High Resolution Mass Spectrometry

Non-Targeted Analysis: Increasing the Data 
Available for Model Evaluation
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Recycled Consumer 
Materials

Residential Dust

Rager et al., Env. Int., 2016

Phillips et al., Env. Sci. Tech. 2018

Published and Ongoing NTA Studies in the 
ExpoCast Project

Consumer Product Emissions
from Different Substrates

Residential Air
Pooled Human Blood

Source and Release Fate and Transport Exposure

Lowe et al., Submitted

Pilot: 20 Consumer Product Categories

Emerging Science: How can we quantify concentrations of chemicals in media using NTA?

Human Placenta

Rager et al., Repro. Tox. , 2020
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• We have applied the same general philosophy to 
both exposure rate prediction and toxicokinetics:

• The fun part of science is building models –
quantitative theories of how the world works

• The tough part is evaluating models – we collect 
evaluation data where we can

• This allows us to estimate uncertainty and 
potentially extrapolate to new circumstances

• We identify modeling gaps – places where we need 
new models

• More than anything we identify data gaps – need 
more data to better evaluate model

Chemical Risk = Hazard x Exposure

High Throughput 
Exposure Rate 

Predictions

mg/kg BW/day

High Throughput 
Screening + 

Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk
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Evaluating Exposure Models with 
the SEEM Framework

 We use Bayesian 
methods to 
incorporate multiple 
models into 
consensus predictions 
for 1000s of chemicals 
within the Systematic 
Empirical Evaluation 
of Models (SEEM)
(Wambaugh et al., 2013, 
2014; Ring et al., 2018)

Estimate 
Uncertainty

Space of 
Chemicals

Chemicals 
with 

Monitoring 
Data

In
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Model 1
Model 2…

Calibrate 
models

Apply calibration and estimated uncertainty
to other chemicals

Evaluate Model Performance
and Refine Models

Dataset 1
Dataset 2…

Exposure 
Inference Different 

Chemicals

Available Exposure Predictors

Wambaugh et al., 2018
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SEEM3 Collaboration
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-

Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathway(s)

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 far field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 far field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 far field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 far field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
far field (2.02)

Arnot et al. (2008) 8167 far field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) near field Direct (2017)

Isaacs (2017) 7511 far field Industrial and 
Pesticide

SHEDS-HT near field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
RAIDAR-ICE near field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. 

(2016,2017)
615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Ring et al., 2018
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Inferred Exposure Rates from CDC NHANES

 Centers for Disease Control and 
Prevention (CDC) National Health and 
Nutrition Examination Survey (NHANES) 
provides an important tool for 
monitoring public health

 Large, ongoing CDC survey of US 
population: demographic, body 
measures, medical exam, biomonitoring 
(health and exposure), …

Daily Intake Rate (mg / kg /day)

135 Chem
icals

Work by Miyuki Breen and Zach Stanfield (Breen et al. and Stanfield et al. both in preparation)
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SEEM3: Pathway-Based Consensus Modeling

Ring et al., 2018

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine
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 SEEM3 consensus model provides estimates of 
human median intake rate (mg/kg/day) for 
nearly 500,000 chemicals via the CompTox 
Chemicals Dashboard 
(http://comptox.epa.gov/dashboard)

 SEEM3 first predicts relevant exposure pathways 
from chemical structure – model predictions are 
then weighted according to the models’ abilities 
to explain NHANES data

 We rely on pathway determinations from Cpdat

 We rely on NHANES biomonitoring data
 2014 FIFRA Scientific Advisory Panel 

identified need for broader sets of 
evaluation data

http://comptox.epa.gov/dashboard
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Risk = Hazard x Exposure

Exposure

Hazard

High Throughput
Risk 

Prioritization

Toxicokinetics

NRC (1983)
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Open-Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating TK 
models

 Curation and development ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open source curve fitting software 
invivoPKfit used to calibrate models to all data:

21Sayre et al. (2020)

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
https://github.com/USEPA/CompTox-PK-CvTdb
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Developing Models with the CvT Database

Linakis et al. (2020)

 USAF and EPA developed generic gas inhalation 
physiologically-based toxicokinetic (PBTK) 
model 

 Evaluated HTTK with CvTdb: 142 exposure 
scenarios across 41 volatile organic chemicals 
were modeled and compared to published in 
vivo data for humans and rat

 Overall RMSE was 0.69, R2 was 0.54 for full 
concentration time-course across all chemicals 
and both species

 R2 was 0.69 for predicting peak concentration
 R2 was 0.79 for predicting time integrated 

plasma concentration (Area Under the Curve, 
AUC)
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Risk-based Chemical Prioritization

 We can use HT-
PBPTK gas 
inhalation model to 
infer exposures 
consistent with 
NHANES data for 
volatile chemicals

 Can compare those 
intake rates with 
doses predicted to 
cause toxicity:

 Bioactivity:Exposure
Ratio (BER) allows 
risk-based 
prioritization

in vitro screening and/or QSAR can 
estimate doses needed to cause bioactivity 
(for example, Wetmore et al., 2015)

Exposure intake rates  can be 
inferred from biomarkers
(for example, Ring et al., 2018)
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Summary

 We need to know chemical hazard, exposure, and toxicokinetics to assess risk posed to the public health
• There are tens of thousands of chemicals in commerce in the environment that lack these data

 At EPA we build consensus models and evaluate them to estimate uncertainty – relies on available data
 Data Needs for Exposure:

• Expanded monitoring data
– NTA will need for semi-quantitative methods
– We must also catalog the chemicals that should be present

• Models for formulation-dependent emission rates from household products
 Data needs for Toxicokinetics:

• USAF and EPA developing aerosol exposure PBTK model but we need a particle dissolution model
• Need additional chemical concentration vs. time in tissue (CvT) data – studies exist in the literature but 

must be made machine-readable

 All models to date focus on chemicals with well-defined structures, what do we do about 
chemicals of unknown, variable composition, or biologicals (UBCBs)?
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