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\fv"EPA Disclaimer

The views expressed in this presentation are those
of the authors and do not necessarily reflect the
views or policies of the U.S. EPA
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2 The Exposure Forecasting (ExpoCast) Project
vEPA

Hazard

Toxicokinetics Exposure
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Evaluating chemicals for risk to humans or
the environment requires information on
hazard and exposure potential

Exposure potential quantifies the degree of
contact between a chemical and a receptor

Toxicokinetic information is required to
bridge hazard and exposure (what real-world
exposure is required to produce an internal
concentration consistent with a potential
hazard?)
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The Exposure Forecasting (ExpoCast) Project

e Evaluating chemicals for risk to humans or
the environment requires information on
hazard and exposure potential

* Exposure potential quantifies the degree of
contact between a chemical and a receptor

* Toxicokinetic information is required to
bridge hazard and exposure (what real-world
exposure is required to produce an internal
concentration consistent with a potential
hazard?)



The Exposure Data Universe
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Useful for generating evaluation data

Traditional use, release, monitoring, and toxicokinetic data are still
unavailable for 1000s of chemicals in commerce.
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How Have ML Models Improved the Exposure-
Relevant Data Landscape?

Examined coverage of chemical
inventories

Regulatory lists

e EPA Toxic Substance
Control Act Non-
Confidential Active

Inventory

38,344 Inventory Chemicals * EPA Endocrine Disruptor

Screening Program
* FDA Everything Added to
Food in the US (EAFUS)

Chemicals tested in high-
throughput screening

* ToxCast
* Tox21
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Examined coverage of chemical
inventories

Regulatory lists

* EPA Toxic Substance
Control Act Non-
Confidential Active
Inventory

* EPA Endocrine Disruptor
Screening Program

* FDA Everything Added to
Food in the US (EAFUS)

Chemicals tested in high-
throughput screening

* ToxCast
* Tox21



%EI:A Machine Learning in Environmental Decision-Making

National Academies Workshop, June 2019 * “Machine learning algorithms can analyze large
volumes of complex data to find patterns and make

Proceedings of a Worksh op predictions, often exceeding the accuracy and

efficiency of people who are attempting the same
IN BRIEF task.”

August 2019

, o . _ _ * Highlighted several areas of environmental health for
Leveraging Artificial Intelligence and Machine Learning to Advance . . . .
. s which Al and machine learning could play an integral
Environmental Health Research and Decisions ) ) )
Proceedings of a Workshop—in Brief role in researCh’ mdUdmg

* Predicting the toxicology of chemicals

* Characterizing the exposome

I Office of Research and Development N



\%EPA Machine Learning in Environmental Decision-Making

National Academies Workshop, June 2019 * “Machine learning algorithms can analyze large
volumes of complex data to find patterns and make
Proceedin gs o f a Wo rkshop pre.d{'ctions, often exceeding the accu.racy and
efficiency of people who are attempting the same

August 2019
* Highlighted several areas of environmental health for

which Al and machine learning could play an integral
role in research, including

Leveraging Artificial Intelligence and Machine Learning to Advance
Environmental Health Research and Decisions

Proceedings of a Workshop—in Brief

* Predicting the toxicology of chemicals

* Characterizing the exposome

% Current Opinion in Toxicology
S
e £

ELSEVIER

* Defined eight classes of NAMs for exposure, including
New Approach Methodologies for Exposure

_ * Chemical descriptors that provide information on
Science

chemicals in an exposure context (e.g., how
John F. Wambaugh ! & &, Jane C. Bare ?, Courtney C. Carignan °, Kathie L. Dionisio *, Robin E. chemica IS are used)

Dodson * ¢, Olivier Jolliet?, Xiaoyu Liu &, David E. Meyer ?, Seth R. Newton *, Katherine A. Phillips *,
Paul S. Price *, Caroline L. Ring °, Hyeong-Moo Shin '°, Jon R. Sobus *, Tamara Tal ', Elin M. Ulrich

1,Danie|A, Val\eroﬂ,Barbara A. Wetmore Q,KEist'\n K. Isaacs * b MaChine'Iearning approaChes that use these
descriptors to fill gaps in existing data
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Learning from Physical Chemistry, Drug Discovery, & Toxicology

QSAR Modeling: Where Have You Been? Where Are You Going To? Medicinal

Artem Cherkasov®, Eugene N. Muratov¥8, Denis Fourchest, Alexandre Varnek!, Igor I. Baskint, M
Paola Gramatica™, Yvonne C. Martin®, Roberto Todeschini®, Viviana Consonn
Romualdo Benigni®, Chihae Yang®, James Rathman*2, Lothar TerflothY, Johann Gasteiger?, Ann Richard¥, and

Alexander Tropsha'¥

_Electronic
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Y
- — 1
N
N
N’
Literature Data Dk
orasre. Data Collection, Repository
; 3 \\ Curatlor‘l &
Discose > Effect Integration
| 2 Virtual Screening
g; - &Molecular «
W Design
Experimental QSAR Models

Validation

Mentions in
Google 0.0000ced
Books

Database

00000002

00000001

Predictive
QSAR
Workflow

Chemical database

QSAR modeling
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ark Cronin®, John Dearden®
= Victor E. Kuzmin$, Richard Cramer®,

Chemistry

Quantitative Structure-Activity Relationships (QSAR)
models have been used for over 50 years to predict the
physical and biological properties of chemicals.

The field has advanced from simple regression methods
to sophisticated machine learning techniques for the
analysis of very large datasets comprising thousands of
diverse molecular structures.

The scientific QSAR community has been on the
forefront of the use of machine learning methods,
having developed:

* New chemical structural descriptor sets

* Many recommendations for best practices,
including model validation



\%EIDA Machine Learning Overview

* Machine learning is ideally suited to look at many factors simultaneously.

* It can identify patterns in large datasets and build corresponding predictive models.

* A major challenge is determining the most appropriate method for the problem.

Descriptors
(input)

Training Data

Predicting a Predicting
category a quantity

/v

Labeled Data Unlabeled Data

4

Classification

Regression

Random
Forests

K-means

Support Vector K-neighbors

; ; Support Vector j
Classification  cjgssifier Spectral Hierarchical pp Ridge

clustering clustering Regression  regression

Portions adapted from https://scikit-learn.org
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SCIENTIFIC D AT A

OPEN : Data Descriptor: The Chemical and
Products Database, a resource for
exposure-relevant data on
chemicals in consumer products

Kathie L. Dionisio®, Katherine Phllp Paul . Price, Christopher M. Grulke?,
Antony Williams?, Derya Biryol™?, Tao Hong* & Kit : K. Isaacs’

= USGS

science for a changing world

o)
p . i
&7 pchem

.....
......

OFEN Databaseofpharmacokmetlctlme-
patapescripTor Series data and parameters for 144
environmental chemicals

Risa R. Sayre(3***=, John F. Wambaugh ©* & Christopher M. Grulke(*

Training and Descriptor Sets for Chemical Exposure

New quantitative and
qualitative chemical use
descriptors from EPA’s
Chemicals and Products
Database (CPDat, Dionisio
et al. 2018)

Traditional (targeted)
monitoring data for
various environmental
media from publicly
available monitoring
databases

In-vitro protein binding
and clearance (Wetmore et
al. 2015, Pearce et al.
2017, Wambaugh et al.
2019a.)

In-vivo toxicokinetic
parameters collected from
the literature (Sayre et al.
2020)

I Office of Research and Development

* Models are only as good as the underlying data!

* In EPA-ORD’s ExpoCast project, we are compiling the
datasets that enable extrapolation of target information
to data-poor chemicals using machine learning.

* Also currently developing IT infrastructure for automated
and manual curation, QA, provenance tracking, and
dissemination of these data (Poster P-117).

* Qurgoalis to be able to ultimately provide all these data
publicly via the CompTox Chemicals Dashboard.
(https://comptox.epa.gov/dashboard)

£ United States )
‘v’ f‘nwmnmemal Protection Home Advanced Search BaichSearch Lists ¥  Predictions Downloads
gency

CompTox Chemicals Dashboard

882 Thousand Chemicals

m Product/Use Categories  Assay/Gene

[ Identifier substring search

See what people are saying, read the dashboard comments!
Cite the Dashboard Publication click here




2 Training and Descriptor Sets for Chemical Exposure
<vEPA : P P

Use Descriptors

FOE

High Throughput Heuristics for Prioritizing Human Exposure to
Environmental Chemicals

John F. WW:unl::.'iugh,""Jr Anran Wang,.tﬁ'” Kathie L. S C | E N T | F | C D AT/A‘\{S?:"D

Richard _]udson.Jr and R. Woodrow Setzer

OPEN : Data Descriptor: The Chemical and
Products Database, a resource for
exposure-relevant data on

chemicals in consumer products

io’, Katherine Phillips’, Paul S. Price’, Christopher M. Grulke,
1, Tao Hong*

Property Descriptors

OPERA models for predicting
physicochemical properties and environmental
fate endpoints

kamel Mansouri'**"®, Chris M. Grulke', Richard 5. Judson' and Antony J. Williams'

https://github.com/kmansouri/OPERA

I Office of Research and Development

* We use a variety of chemical descriptor sets for our
exposure models.

* Different descriptor sets contain unique information
that can inform predictive models.

* OPERA and ToxPrint descriptors can be easily
downloaded for thousands of substances using the
batch search utility of the CompTox Chemicals
Dashboard.

Structural/Molecular Descriptors

@ CrossMark
Ll

. ...... PaDEL-descriptor: An open source software to calculate
I A wms 4 molecular descriptors and fingerprints
Chun Wei Yap &




\“-}EPA Method of Random Forests

Package ‘randomForest’

. . October 7, 2015
* Ensemble average over many decision

trees

Title Breiman and Cutler's Random Forests for Classification and
Regression

Version 4.6-12
Date 2015-10-06

 Randomly select subset of descriptors
and grow ‘unpruned’ tree, repeat many
times

* Model returns a probability equal to
fraction of trees returning a positive
classification

* Importance of descriptors can be
guantified

I Office of Research and Development




\%EPA Method of Random Forests

l
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Target Descriptors

Random Forest

/

Validate models
* Does model work beyond
the training set?
- * Does the model perform
better than one built using
random data?
\

\

J

I Office of Research and Development

Figure from Katherine Phillips
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Descriptors
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Figure from Katherine Phillips
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Model Validation and Applicability Domain (AD)

5-fold cross validation

Model | Model II Model 111 Model IV Model V
Test Set Fodl || Foan | [ roam || Feawv | [ Fouav
Fold Il Fold I Fold 1 Fold I Fold I
o Fold 111 Fold 111 Fold 11 Fold 11 Fold 11
Training Set
Fold IV Fold IV Fold IV Fold I1I Fold IIT
Fold vV Fold V Fold V Fold V Fold IV
Y-randomization
Independent Chemical Independent Chemical
Variable Descriptors Variable Descriptors
f‘)\ AV K'A N
L Chemicall T[T TTTTTT11] - ~ [Chemicalvil]
Chemicall Orlgmal
[Chemicalm J[TTTTTTTTT] Training L ChemicalVI [ TTTTTTVIT]
[Chemieam J[ITTTTTTTT] Set CChemea I [T T T T TTTT]
[Chemicallv J[ T T TITTITTTT1] [ ChemicallX |[[TTTTTTTTT]
[Chemicalv J[TTTTTTTTT] LChemicallll \[TTTTTTTTT]
L ChemicalVI J[L LTI T 1T IT11 L ChemicallV LI 1T 1TV ITT1]
LChemicalVIl J[L T T T T TT V111 : L Chemicalll ILTTVVTTVTVT]
Randomized —
[ChemieaVIT ] [TTTTTTTT1] Training [ChemicalV_] [EIRIRISIRIRIRININE
[ ChemicallX [ [ [ VT TV VT 11/ Set L Chemicall JI 1T ITTTT1T17T1]

I Office of Research and Development

* Validation approaches:

» 5-fold cross validation (build the model 5
times withholding a different subset of
the data each time for testing)

* Y-randomization (build the model using
randomized target assighment to
descriptors - does the true model
outperform the randomized version?)

* Evaluation with true external training
sets

Figure from Katherine Phillips



\“-"EIDA Model Validation and Applicability Domain (AD)

AD: The response and chemical structure space in which the
model makes predictions with a given reliability

Figure from Katherine Phillips
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Methods for Assessing AD in

Chemical Space * QSAR/Machine learning best-practices include an
emphasis on model validation and the need to
define model applicability domain (AD) in the
chemistry space (Tropsha et al. 2007)

Bounding Box

* Knowledge of the AD is required for assessing

v

1 @ rraining Set confidence in predictions for new chemicals and
External Set— Inside AD guantifying the utility of additional data.
O  Convex Polygon O External Set — Outside AD

O

»
»

As in Sahigara et al., Molecules (2012):

® o
..‘é:g@ Distance Method Comparison of Different Approaches to Define the Applicability Domain
of QSAR Models
® P

> Faizan Sahigara, Kamel Mansouri, Davide Ballabio, Andrea Mauri, Viviana Consonni and
Roberto Todeschini *
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Chemical Functional Use

Plasticizer

Quantitative Structure-Use Relationships
(QSURs)

Built from a training set of over 15,000
reported functions

Used to inform screening of chemical libraries
for potential alternatives with lower toxicity
Used in non-targeted analysis workflows for
ground truthing tentatively identified chemicals

Green Chemistry

PAPER e
@gmssMalk High-throughput screening of chemicals as
functional substitutes using structure-based

Cite this: Green Chem, 2017, 19,

1063 classification models¥

Katherine A. Phillips,**< John F. Wambaugh,® Christopher M. Grulke,”
Kathie L. Dionisio® and Kristin K. Isaacs®

7\

<

Phillips et al., Green Chem., 2017
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* Using functional use predictions to estimate
guantitative chemical weight fractions in consumer
formulations (Isaacs et al., 2016) and articles

e Using Natural Language Processing Support Vector

Classification models to assign 100,000 consumer S— ol Chemical Manufacturing
. . . CHEMICAL Productsand g
product ingredient documents to harmonized ok Durable Goods )
categories for modeling and ’ l
RELEASE
Waste \ Exposure
/Nf\ N l Media
Indoor Air, Dust, Surfaces Foo Drinking Outdoor Air, Soil, Surface
Water Ground Water
EXPOSURE ONSUMEI OCCUPATION /&JSTR’AU %ﬁloc{c AL
RY
Xposlure
ENVIRONMENTAL — athways
SURVEILLANCE i Y /{ Flof':::ggls:;na
and RECEPTORS
BIOMONITORING .
Sampling
Biomarkers Biomarkers
TOXICOKINETICS  NotExposure of Exposure

I Office of Research and Development
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* Using functional use predictions to estimate
guantitative chemical weight fractions in consumer
formulations (Isaacs et al., 2016) and articles

e Using Natural Language Processing Support Vector

Classification models to assign 100,000 consumer Ea—  Chemical Manufacturing
Productsand OtherIndustry P — {
product ingredient documents to harmonized CH%"S’"ECAL Durable Goods : |
categories for modeling and ’
RELEASE Waste | £
. . . . . Xposure
* Prediction of chemical releases associated with / v = \ Media
. . . Indoor Air, Dust, Surfaces \ | ] Dnnkm utdoor Air, Soil, Surface
industrial scenarios and processes (ORD Center for ( - Fj“’ ) Watgf GRS
Environmental Solutions & Emergency Response) EXPOSURE bONSUMET occupAl N;{ y / DUSTR'AUAMB’E”T ECOLO%CAL
L - . Xposiire '
ENVIRONMENTAL \, ~___—Pathways
SURVEILLANCE D o
Z loraand Fauna
and RECEPTORS
BIOMONITORING )
Sampling o
TOXICOKINETICS  [ofExnesun of Exposure
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* Using functional use predictions to estimate
guantitative chemical weight fractions in consumer
formulations (Isaacs et al., 2016) and articles

e Using Natural Language Processing Support Vector

1]

Classification models to assign 100,000 consumer Consumer EYRARRN, . - Chemical Manufacturing
product ingredient documents to harmonized CHEMICAL DeRiscss ~J / |
categories for modeling and ) ] , |
. .. . . . RELEASE a"V ) W:ste i N | Exposun
* Prediction of chemical releases associated with N oV — N\ Wedia
industrial scenarios and processes (ORD Center for / e || reod | Dﬁﬁfl"f °”"’Z°Lf:f$l§?m
Environmental Solutions & Emergency Response) EXPOSURE CONSUMER OCCU% / / /‘éUSTR'AUAMB’E”T scow%m
* Prediction of chemical occurrence in 26 different types ENVIRONMENTAL V ///ff {ﬁ’;f:f;’;:
of environmental and biological media. SURVEILLANCE Human 2 Floraana Fauna
BIOMO?\?I:ORING RECEPTORSSam lin
TOXICOKINETICS  [ofExnesun o S

I Office of Research and Development



o~
\'IEPA Applying Machine Learning to Other Exposure Domains

Using functional use predictions to estimate
guantitative chemical weight fractions in consumer
formulations (Isaacs et al., 2016) and articles

Using Natural Language Processing Support Vector
Classification models to assign 100,000 consumer
product ingredient documents to harmonized
categories for modeling

Prediction of chemical releases associated with
industrial scenarios and processes (ORD Center for
Environmental Solutions & Emergency Response)

Prediction of chemical occurrence in 26 different types
of environmental and biological media.

Prediction of method amenability in high-resolution
mass spectrometry (ORD Center for Computational
Toxicology and Exposure)

I Office of Research and Development
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SURVEILLANCE 4 £ Ecoiogical
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Applying Machine Learning to Other Exposure Domains

Using functional use predictions to estimate
guantitative chemical weight fractions in consumer
formulations (Isaacs et al., 2016) and articles

Using Natural Language Processing Support Vector
Classification models to assign 100,000 consumer
product ingredient documents to harmonized
categories for modeling

Prediction of chemical releases associated with
industrial scenarios and processes (ORD Center for
Environmental Solutions & Emergency Response)

Prediction of chemical occurrence in 26 different types
of environmental and biological media.

Prediction of method amenability in high-resolution
mass spectrometry (ORD Center for Computational
Toxicology and Exposure)

In-silico machine learning models for toxicokinetic
parameters: protein binding and clearance for
environmental chemicals

I Office of Research and Development
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Systematic Empirical Evaluation of Models

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin Isaacs, Olivier Jolliet,
Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

o Predictor (including Models) Reference(s) Chemicals Pathways
@ G EPA Inventory Update Reporting and Chemical Data Reporting US EPA (2018) 7856 Al
Giiot Besousrihi i Conedittie (CDR) (2015)
Stockholm Convention of Banned Persistent Organic Pollutants Lallas (2001) 248 Far-Field Industrial and
(2017) Pesticide
M EPA Pesticide Reregistration Eligibility Documents (REDs) Wetmore et al. (2012, 2015) 239 Far-Field Pesticide
UNIVERSITY OF Exposure Assessments (Through 2015)
United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 Far-Field Industrial

UC DAVIS Environmental Toxicology and Chemistry toxicity model (USEtox)

UNIVERSITY OF CALIFORNIA Industrial Scenario (2.0)

A UNIVERSITY OF USEtox Pesticide Scenario (20) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide
e };Eéﬁg Risk Assessment IDentification And Ranking (RAIDAR) Far-Field Arnot et al. (2008) 8167 Far-Field Pesticide
0 X (2.02)
DTU T:l?;?:]:es EPA Stochastic Human Exposure Dose Simulator High Throughput  Isaacs (2017) 7511 Far-Field Industrial and
& Universitet (SHEDS-HT) Near-Field Direct (2017) Pesticide
>--- SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

€D ST,
SV e

é"" ° .To Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
g é RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
%} M N USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential
%ﬂ pno“‘é@ USEtox Dietary Scenario (2.0) Jclall(i;t)le;)al. (2015), Huang et al. (2016), Ernstoff et 8167 Dietary
al.

I Office of Research and Development Material from John Wambaugh

-~



\% EPA Pathway Prediction Enabled Consensus Modeling of Exposure

Ring et al., 2019

0l R%=0.816
RMSE = 0.929

 Consumer (Near-Field),
Industrial, Pesticide, Dietary

Pathway(s)
Consumer
Consumer, Industrial
Consumer, Pesticide
Consumer, Pesticide, Industrial
" Dietary, Consumer
Dietary, Consumer, Industrial
Dietary, Consumer, Pesticide
Dietary, Consumer, Pesticide, Industrial
Dietary, Pesticide, Industrial
Industrial
Pesticide
Pesticide, Industrial

* Each chemical may have
exposure by multiple pathways

¢ p e B

 Machine learning models
were built for each of four
exposure pathways

Consensus Model Predictions

-13 -9

10 10 107°

Intake Rate (mg/kg BW/day) Inferred from
NHANES Serum and Urine

I Office of Research and Development Material from John Wambaugh
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Predicting Exposure Pathway with Machine Learning

We use the method of Random Forests to relate chemical structure and properties
to exposure pathway

Negatives

Dietary 2523 8865

Near-Field 1622 567

Far-Field 1480 6522

Pesticide

Far Field 5089 2913
Industrial

I Office of Research and Development

&l OOB Error Rate

21

Positives Error

32

24

36

16

Balanced

73

74

80

8l

Sources of Positives

FDA CEDI, ExpoCast, CPDat (Food,
Food Additive, Food Contact),
NHANES Curation

CPDat (consumer_use,
building_material), ExpoCast,
NHANES Curation

REDs, Swiss Pesticides, Stockholm
Convention, CPDat (Pesticide),
NHANES Curation

CDR HPV, USGS Water Occurrence,
NORMAN PFAS, Stockholm
Convention, CPDat (Industrial,
Industrial_Fluid), NHANES Curation

Sources of Negatives

Pharmapendium, CPDat (non-food),
NHANES Curation

CPDat (Agricultural, Industrial), FDA
CEDI, NHANES Curation

Pharmapendium, Industrial Positives,
NHANES Curation

Pharmapendium, Pesticide Positives,
NHANES Curation

Material from John Wambaugh




\fy" EPA Pathway Prediction Enabled Consensus Modeling of Exposure

Ring et al., 2019

* Machine learning models were

built for each of four exposure
10%4 1880 chemicals 101 b
pathways "¢ >0.1 mg/kg bw/day ’
° Pathway predictions can be 2 1 Gons., Ind. 2 1 478046 chemicals
: g [ — e Bl <0.1.me/kg bwiday_____
used for large chemical g | (1 an e T ke s
libraries 3 Il Lo il bk it S
» Use prediction (and accuracy of s oo 8
prediction) as a prior for & 10 & 1o
Bayesian analysis
1ghemical Rank o o 1"1Dnchze:(r:1?:25|3|;;?:k4k 107 e

e Each chemical may have

exposure by multiple pathways Of 687,359 chemicals evaluated, 30% have less than a 50%
probability for any of the four pathways and are
considered outside the applicability domain.
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EPA How Have ML Models Improved the Exposure-
Relevant Data Landscape?

 Examined coverage of chemical

inventories
FDAEEE[S’E || I r I * Regulatory lists
ToxCast e EPA Toxic Substance Control
Tox21. | Act Non-Confidential Active
L Hpp— Inventory
EPA Pesticide REDs * EPA Endocrine Disruptor
CEDI(FDA) Screening Program

Health Canada CMP (Consumer)

 FDAE thing Added t
Health Canada CMP (Ambient) verything Added to

Food in the US (EAFUS)

* Chemicals tested in high-
throughput screening

38,344 Inventory Chemicals

e ToxCast
e Tox21
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EPA How Have ML Models Improved the Exposure-
Relevant Data Landscape?

(&

 Examined coverage of chemical
inventories

FDAEAFUS I|| r I * Regulatory lists

Toig:; e EPA Toxic Substance Control
Tox21 Act Non-Confidential Active
7SCA Il J|_ Inventory
EPA Pesticide REDs * EPA Endocrine Disruptor
CEDI(FDA) Screening Program
Health Canada CMP (Consumer) «  FDA Everything Added to

Health Canada CMP (Ambient)
SEEM3 (ExpoCast Consensus)
Pathway Prediction (Incustrial)

)

Food in the US (EAFUS)

* Chemicals tested in high-
throughput screening

Pathway Prediction (Pesticide
Pathway Prediction (Consumer) Ib H J‘ e ToxCast
Pathway Prediction (Dietary | i . Tox21

38,344 Inventory Chemicals
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2 EPA How Have ML Models Improved the Exposure-
A Y 4 Relevant Data Landscape?
Outside the TSCA UVCBs, Outside the
Applicability mixtures, Applicability
Domain of the ] ) Domain of the . .
Pathway Models inorganics Pathway Models * Examined coverage of chemical
s S b T inventories
FDAEAFUS | -
* Regulatory lists
EDSP | sHaory
ToxCast | e EPA Toxic Substance Control
Tox21. | Act Non-Confidential Active
TSCA Inventory
EPA Pesticide REDs * EPA Endocrine Disruptor
CEDI(FDA) Screening Program

Health Canada CMP (Consumer)
Health Canada CMP (Ambient)
SEEM3 (ExpoCast Consensus)
Pathway Prediction (Industrial)

)

* FDA Everything Added to
Food in the US (EAFUS)

* Chemicals tested in high-
throughput screening

Pathway Prediction (Pesticice
Pathway Prediction (Consumer) e ToxCast
Pathway Prediction (Dietary) e Tox21

38,344 Inventory Chemicals
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o
v/ EPA Strategies for Regulatory Acceptance

* Challenges:
* Transparency and reproducibility
e Determination of fit-for-purpose: How is suitability assessed? What
criteria?
* Strategies:

* Learning from QSAR: Development of documentation and reporting
standards

* Training data, modeling methods, AD, results (predictions),
performance metrics

* Data accessibility
* Versioning
* Iterative development frameworks

* Integration into tiered workflow case studies (demonstration of value
added when no other data are available)

e Continued external validation (with datasets of regulatory relevance)
e Characterization of uncertainty

I Office of Research and Development
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EPA Summary

<

Machine learning is a powerful tool for extrapolating existing information to chemicals
lacking data.

We are building the training sets and machine-learning based predictive tools to
estimate exposure-relevant information from chemical descriptors.

* We aim to develop workflows that allow for validation of model performance,
characterization of chemical domain of applicability, and incorporation of new
information as data become available.

* These new approach methodologies are improving our coverage of key chemical
inventories.

* The predictions from these models provide defensible methods for filling knowledge
gaps in process-based models, analytical workflows, chemical prioritization, and other
risk-based evaluations.
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