# State of the Science: ToxCast and Tox21 assays and approaches to screening for potential thyroid hormone disruption

Katie Paul Friedman, PhD

Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency

Research Triangle Park, NC

Email: paul-friedman.katie@epa.gov

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

#### **Conflict of Interest Statement**

The author declares no conflict of interest.

### **Overview of this presentation**

- A thyroid adverse outcome pathway network as a template for high-throughput screening (HTS) assay development
- Currently available ToxCast/Tox21 HTS assays
- Bringing context to currently available data
- Brief example of a single chemical

## A thyroid adverse outcome pathway network as a guide

#### Commentary

A Section 508-conformant HTML version of this article is available at https://doi.org/10.1289/EHP5297.

#### Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with *in Vitro* Testing and Adverse Outcome Pathway Approaches

Pamela D. Noyes,<sup>1</sup> Katie Paul Friedman,<sup>2</sup> Patience Browne,<sup>3</sup> Jonathan T. Haselman,<sup>4</sup> Mary E. Gilbert,<sup>5</sup> Michael W. Hornung,<sup>4</sup> Stan Barone Jr.<sup>6</sup> Kevin M. Crofton,<sup>2†</sup> Susan C. Laws,<sup>5</sup> Tammy E. Stoker,<sup>5</sup> Steven O. Simmons,<sup>2</sup> Joseph E. Tietge,<sup>4</sup> and Sigmund J. Degitz<sup>4</sup>

<sup>1</sup>National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA

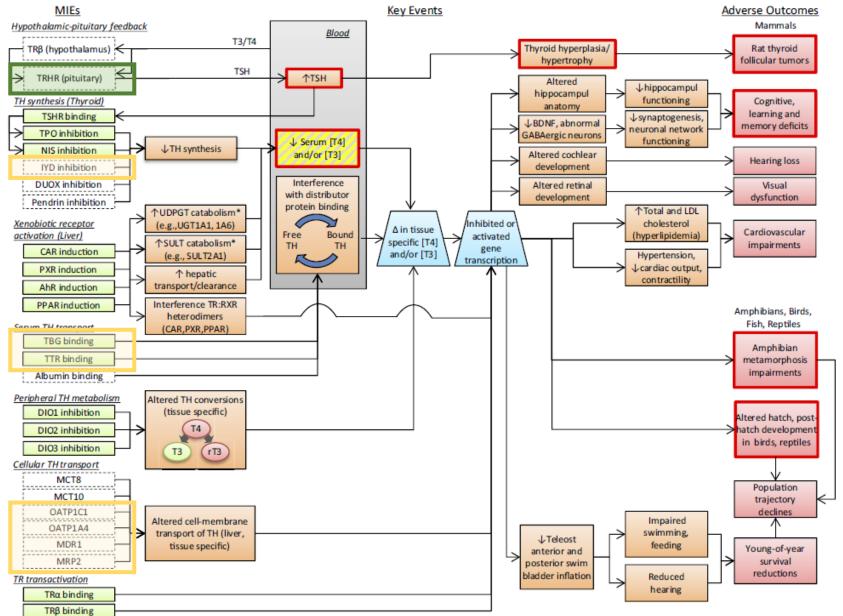
<sup>2</sup>National Genter for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA

<sup>3</sup>Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France <sup>4</sup>Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA <sup>5</sup>Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA

<sup>6</sup>Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA

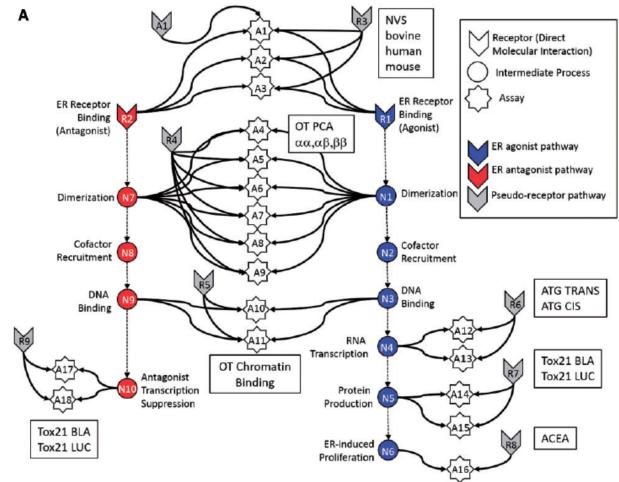
BACKGROUND: Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, *in vitro* assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented.

OBJECTIVES: We present an adverse outcome pathway (AOP) network to link data derived from *in vitro* assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from *in vivo* testing. We examine the role of new *in vitro* technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism.


Discussion: There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of *in vitro* assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297

Noyes PD, Paul Friedman K, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. (2019). Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with In Vitro Testing and Adverse Outcome Pathway Approaches. <u>Environmental Health Perspectives</u>. DOI: <u>https://doi.org/10.1289/EHP5297</u>

- Challenge 1: Health effects guideline studies often measure apical outcomes without measures that indicate relevant molecular initiating event(s) [MIE(s)].
- **Challenge 2:** Screening for thyroid disruption is not centered around the thyroid hormone receptor; indeed there are many other MIEs/KEs that are thought to be more relevant for xenobiotic disruption.
- **Approach:** HTS assays typically target MIEs or key events (KEs), and so a battery of assays will be needed to capture effects observed in *in vivo* models.
- **Progress:** In the last 10 years, more HTS assay development and application have occurred.
- Outlook: Many MIE and KE targets still lack confirmatory or orthogonal assay information, and so careful examination of results and additional context will be needed.


## A thyroid adverse outcome pathway network as a guide

- Green boxes indicate MIEs with HTS data in ToxCast
  - TRHR added since publication;
  - IYD close to publication and in next ToxCast release;
  - Assays exist for TBG and TTR binding, but not in ToxCast;
  - Some indication of liver transporters from HepaRG data recently released (LTEA) and from primary hepatocyte data (CellzDirect).
- What about the need for redundancy/confirmation at assay targets?
- What about quantitative key event relationships?



# In contrast, endocrine-related bioactivity for estrogen and androgen has focused predominantly on their receptors

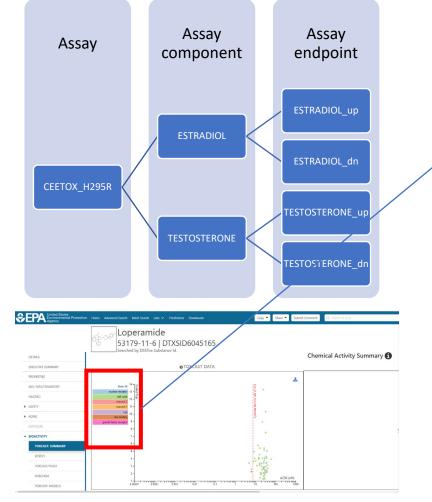
- Other targets may be important, but the estrogen and androgen receptors themselves are somewhat promiscuous but relevant xenobiotic targets.
- Resources have been spent to establish redundancy of assays for these receptors to enable rationale systems-based modeling of receptor binding, complex formation, translocation, and activity as transcription factors.
- Thyroid hormone receptor (TR) may be less promiscuous for xenobiotics.
- Many more targets may be important for thyroid hormone homeostasis, and so the data integration approaches taken will need to be different.



Contrasting example to thyroid: the ToxCast ER model from Richard Judson and colleagues.

https://doi.org/10.1093/toxsci/kfv168

# Assay data available in ToxCast invitrodb v 3.3 (released Aug 2020)


The CompTox Chemicals Dashboard release from July 2020 is now using ToxCast invitrodb version 3.3: <u>https://doi.org/10.23645/epacomptox.6062479.v5</u>

Data downloads for invitrodb and summary files: <u>https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data</u>

We anticipate a new ToxCast release in 2021.

## A bit about ToxCast assay endpoints and annotation

#### Example assay annotation hierarchy



- Many assay endpoints are mapped to a gene, if applicable
- Assay endpoints now cover 1398 unique gene targets in invitrodb version 3.3, in addition to other processes
- Intended target family is one way to understand biological target (incomplete list here):
  - Apolipoprotein
  - Apoptosis
  - Background measurement
  - Catalase
  - Cell adhesion
  - Cell cycle
  - Cell morphology
  - CYP
  - Cytokine
  - Deiodinase
  - DNA binding
  - Esterase

- Filaments
- GPCR
- Growth factor
- Histones
- Hydrolase
- Ion channel
- Kinase
- Ligase
- Lyase
- Malformation (zebrafish)
- Membrane protein
- Metabolite (Stemina metabolomics)
- Mitochondria

- Methyltransferase
- microRNA
- Mutagenicity response
- Nuclear receptor
- Oxidoreductase
- Phosphatase
- Protease/inhibitor
- Steroid hormone
- Transferase
- Transporter

https://comptox.epa.gov/dashboard/assay\_endpoints/

Download summary information here: https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data

#### Finding thyroid-related ToxCast assays and additional annotation information

| - → c | Comptox.epa.gov/dashboard/assay_endpoints/ | Home    | Advanced Search Batch | Search Lists 🗸 Pr   | redictions Downloads                                             | Share 🔻 📿 Searc                                                                 | h all data           | Q & A 🛊                 | Search by gene (TR, TSHR, TRHR,<br>TPO, SLC5A5, DIO, etc), assay                                 |  |  |  |
|-------|--------------------------------------------|---------|-----------------------|---------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|-------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
|       | ▲ Download ▼                               |         |                       | Ass                 | ay List<br>Filter by ven                                         | dor 🗸 NIS_                                                                      | 🖪 Сору               | filtered page URL       | "vendor", or key words on the<br>CompTox Chemicals Dashboard:<br>comptox.epa.gov/dashboard/assay |  |  |  |
|       | Assay Component Endpoint Name 🗘            | Details |                       | Single Conc. Active | Description                                                      |                                                                                 |                      | Gene Symbols            | endpoints.                                                                                       |  |  |  |
|       | NIS_RAIU_inhibition                        |         | 282 / 375             | -                   | enzyme reporter assay using Mic<br>HEK293T cell line: AEID2037 N | roBeta radioactivity plate reader to monito<br>IS_RAIU_inhibition               | or enzyme in         | SLC5A5                  |                                                                                                  |  |  |  |
|       | NIS_HEK293T_CTG_Cytotoxicity               |         |                       | -                   |                                                                  | iferase-coupled ATP quantitation to monit<br>D2110 NIS_HEK293T_CTG_Cytotoxicity | or cellular          |                         |                                                                                                  |  |  |  |
|       |                                            |         |                       |                     | -                                                                | Annotations Citations tcpl Pro                                                  | 5                    | agents AOPs             | <b>▲</b> Excel                                                                                   |  |  |  |
|       |                                            |         |                       |                     |                                                                  | Aeid<br>Assay Component Endpoint Name                                           | 2037<br>NIS RAIU inl | abition                 |                                                                                                  |  |  |  |
|       | Can also dow                               |         |                       |                     |                                                                  | Assay Component Endpoint Desc                                                   |                      | orter assay using Micro | Beta radioactivity plate reader to monitor enzyme in HEK293T cell line: AEID2037                 |  |  |  |
|       | SUMMARY file which contains a              |         |                       |                     |                                                                  | Assay Function Type                                                             | binding              | binding                 |                                                                                                  |  |  |  |
|       | table that maps assay endpoint to          |         |                       |                     |                                                                  | Normalized Data Type percent_activity                                           |                      |                         |                                                                                                  |  |  |  |
|       | Ê                                          | gene    |                       |                     |                                                                  | Analysis Direction                                                              | positive             |                         |                                                                                                  |  |  |  |
|       |                                            |         |                       |                     |                                                                  | Burst Assay                                                                     | false                |                         |                                                                                                  |  |  |  |
|       |                                            |         |                       |                     |                                                                  | Key Positive Control Signal Direction                                           | NaClO4<br>loss       |                         |                                                                                                  |  |  |  |
|       |                                            |         |                       |                     |                                                                  | Signal Direction                                                                | .035                 |                         |                                                                                                  |  |  |  |

Intended Target Type

protein

# Thyroid hormone synthesis (and peripheral metabolism): thyroperoxidase (TPO), sodium iodide symporter (NIS), and deiodinase inhibition (DIO)

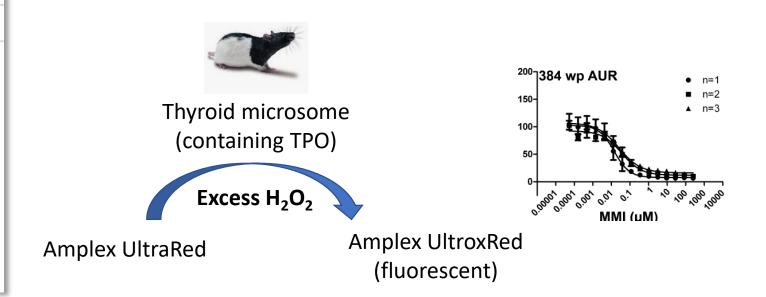
| aeid | Assay endpoint name (aenm) (current, changes) |
|------|-----------------------------------------------|
| 1508 | NCCT_TPO_AUR_dn                               |
|      |                                               |
| 1509 | NCCT_HEK293T_CellTiterGlo                     |
| 1848 | NCCT_QuantiLum_inhib_2_dn                     |
| 2037 | NIS_RAIU_inhibition                           |
| 2110 | NIS_HEK293T_CTG_Cytotoxicity                  |
| 2309 | NHEERL_MED_hDIO1_dn                           |
| 2532 | NHEERL_MED_hDIO2_dn                           |
| 2533 | NHEERL_MED_hDIO3_dn                           |

#### Assay principle of the current ToxCast Amplex UltraRed TPO (AUR-TPO) inhibition assay



doi: 10.1093/toxsci/kfw034 Advance Access Publication Date: February 15, 2016 Research Article

TOXICOLOGICAL SCIENCES, 151(1), 2016, 160-180


#### Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries

Katie Paul Friedman,<sup>\*,†,2</sup> Eric D. Watt,<sup>\*,‡,2</sup> Michael W. Hornung,<sup>§</sup> Joan M. Hedge,<sup>†</sup> Richard S. Judson,<sup>‡</sup> Kevin M. Crofton,<sup>‡</sup> Keith A. Houck,<sup>‡</sup> and Steven O. Simmons<sup>‡,1</sup>

<sup>\*</sup>Oak Ridge Institute for Science Education Postdoctoral Fellow, Oak Ridge, TN, 37831, <sup>1</sup>Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, <sup>‡</sup>National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, and <sup>§</sup>Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, 55804

Paul Friedman K, Watt ED, Hornung MW, Hedge JM, Judson RS, Crofton KM, Houck KA, Simmons SO. (2016). Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors within the ToxCast Phase I and II Chemical Libraries. Toxicological Sciences. DOI: https://doi.org/10.1093/toxsci/kfw034

**Paul KB**, Hedge JM, Rotroff DM, Crofton KM, Hornung MH, Simmons SO. (2014). Development of a thyroperoxidase inhibition assay for medium through-put screening. <u>Chemical Research in Toxicology</u>. <u>https://doi.org/10.1021/tx400310w</u>



- Lead substance: methimazole (MMI)
- Other example positive reference chemicals: 6-propyl-2-thiouracil, dietary isoflavones, malachite green, ethylene bisthiocarbamates
- Also evaluated with a training set of reference chemicals
- Positive rate may approach 30% so context is important for filtering positives (consider sources of interference)
- Loss-of-signal assay

#### **Context for interpretation**

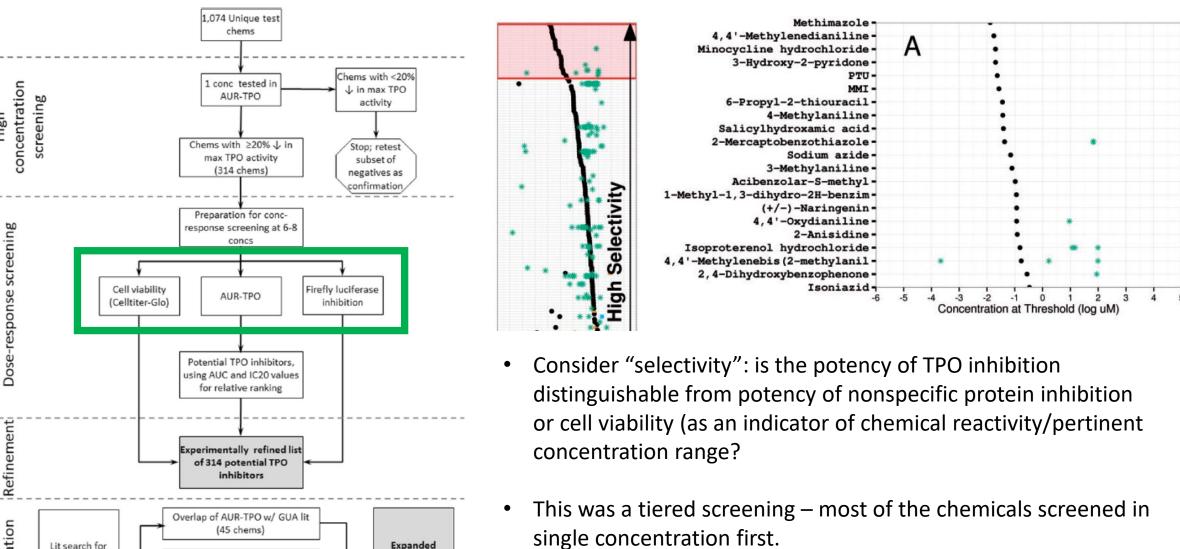
High

Confirmation

chems tested in

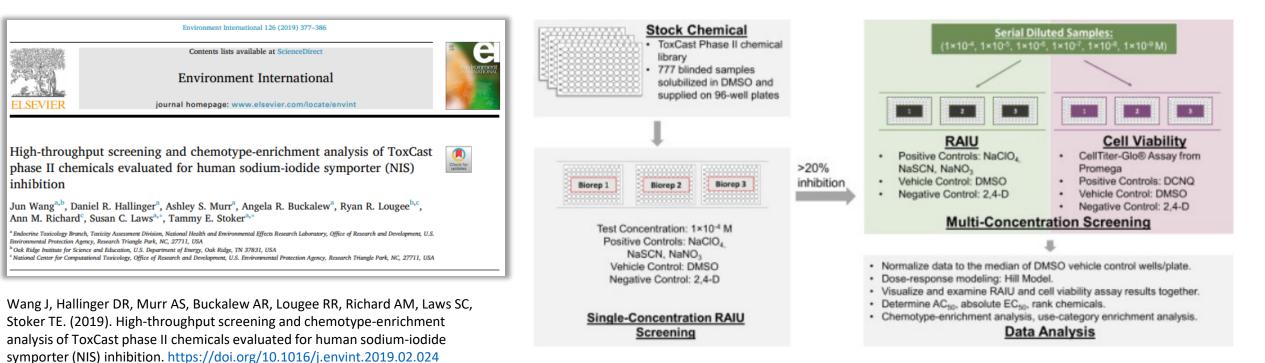
GUA

(114 chems)


AUR-TPO testing of GUA lit chems

(56 chems)

GUA testing of ToxCast chems (49 chems) overlap of AUR


TPO and GUA

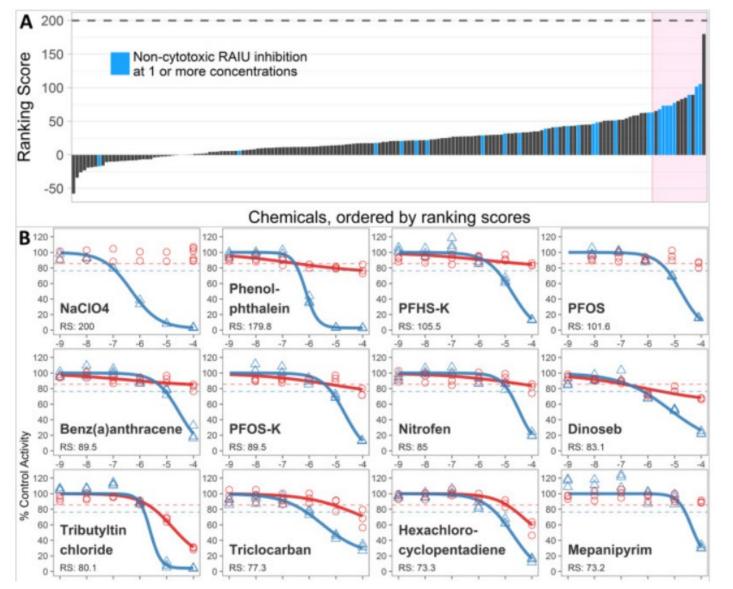
(150 chems)



• Consider lead mode-of-action for these substances?

## Assay principle of the ToxCast NIS inhibition assay




Wang J, Hallinger DR, Murr AS, Buckalew AR, Simmons SO, Laws SC, Stoker TE. (2018). High-throughput screening and quantitative chemical ranking for

sodium-iodide symporter inhibitors in ToxCast Phase I chemical library.

10.1021/acs.est.7b06145

- Positive rate may approach 30-50% depending on the chemical library screened
  - In Screening ToxCast Phase 2, only 25 substances were considered selective

#### **Context for interpretation**



• Tiered screening (single concentration screening followed by selected multi-concentration screening).

• Also a loss-of-signal assay with high hit-rate.

- Cytotoxicity may be a source of interference.
- Lead modes of action for these substances that may appear selective?

Lecat-Guillet N et al. 2008 identified organics that inhibited NIS beyond perchlorate and other monovalent anions

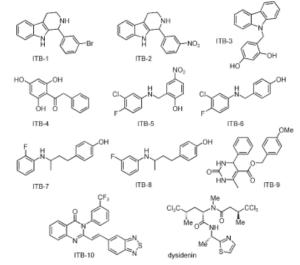



Figure 2. Structures of the most potent iodide uptake inhibitors; dysidenin is also shown.

From Wang et al. 2019

## Assay principle of the DIO inhibition assays

|      | SOT            | Society of<br>Toxicology |
|------|----------------|--------------------------|
| FORD | www.toxsci.oxf | ordjournals.org          |

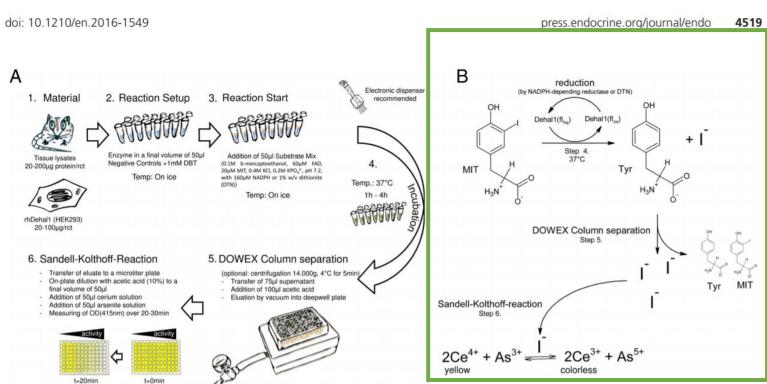
TOXICOLOGICAL SCIENCES, 168(2), 2019, 430-442

doi: 10.1093/toxsci/kfy302 Advance Access Publication Date: December 18, 2018 Research Article

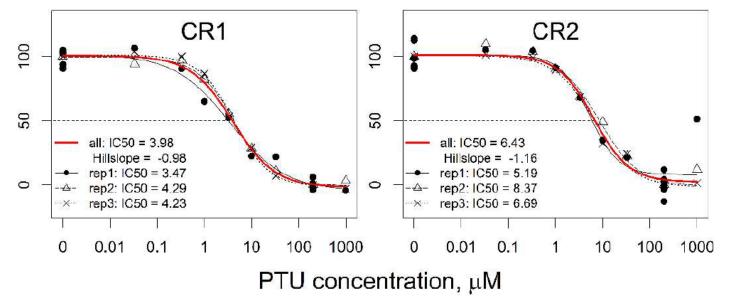
#### Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for Inhibitors of Iodothyronine Deiodinases

Jennifer H. Olker, \*<sup>,†,‡,§,1</sup> Joseph J. Korte, \*<sup>,†,‡,§</sup> Jeffrey S. Denny, \*<sup>,†,‡,§</sup> Phillip C. Hartig,<sup>\*,†,‡,¶</sup> Mary C. Cardon,<sup>\*,†,‡,¶</sup> Carsten N. Knutsen,<sup>11</sup> Paige M. Kent,<sup>111</sup> Jessica P. Christensen,<sup>111</sup> Sigmund J. Degitz,\*<sup>,†,‡,§</sup> and Michael W. Hornung\*,†,‡,§

\*U.S. Environmental Protection Agency; <sup>†</sup>Office of Research and Development; <sup>‡</sup>National Health and Environmental Effects Research Laboratory; <sup>§</sup>Mid-Continent Ecology Division, Duluth, Minnesota 55804; <sup>II</sup>Toxicity Assessment Division, Research Triangle Park, North Carolina 27709; <sup>II</sup>Mid-Continent Ecology Division, Student Services Contractor to the U.S. EPA, NHEERL, Duluth, Minnesota 55804; and <sup>111</sup>Mid-Continent Ecology Division, ORAU Student Services Contractor to the U.S. EPA, NHEERL, Duluth, Minnesota 55804


<sup>1</sup>To whom correspondence should be addressed at U.S. EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, 6201 Congdon Blvd, Duluth, MN 55804. Fax: (218) 529-5003. E-mail: olker.jennifer@epa.gov.

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use


Olker JH, Korte JJ, Denny JS, Hartig PC, Cardon MC, Knutsen CN, Kent PM, Christensen JP, Degitz SJ, Hornung MW. (2019). Screening the ToxCast Phase 1, Phase 2, and e1k Chemical libraries for Inhibitors of Iodothyronine Deiodinases doi: 10.1093/toxsci/kfy302

Hornung MW, Korte JJ, Olker JH, Denny JS, Knutsen C, Hartig PC, Cardon MC, Degitz SJ. (2018). Screening the ToxCast Phase 1 Chemical Library for Inhibition of Deiodinase Type 1 Activity. 10.1093/toxsci/kfx279

- HEK293 cell lysates overexpressing DIO1, DIO2, DIO3
- Method similar to Renko et al. 2016 (below) to detect excess iodide
- Examples: DIO1: genistein, PTU, iopanoic acid



## **Context for interpretation**

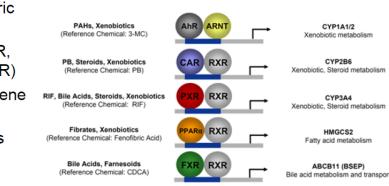


Example highly reproducible PTU inhibition of DIO1 (from Hornung et al. 2018 Supp Figs)

- Hit rates are a bit lower than the TPO and NIS assays for 20% inhibition (~10-20%)
- Interference from surfactants or chemicals that disrupt membranes/nonspecific protein inhibition
- Iodine-containing substances are not amenable to the Sandell-Kolthoff chemistry
- Lead modes of action again might be considered

# Indicators of hepatic catabolism

| aeid | aenm                            |
|------|---------------------------------|
| 806  | TOX21_AhR_LUC_Agonist           |
| 807  | TOX21_AhR_LUC_Agonist_viability |
| 116  | ATG_CAR_TRANS_up                |
| 712  | NVS_NR_hCAR_Agonist             |
| 713  | NVS_NR_hCAR_Antagonist          |
| 1405 | ATG_CAR_TRANS_dn                |
| 2047 | TOX21_CAR_Agonist               |
| 2048 | TOX21_CAR_Agonist_viabillity    |
| 2049 | TOX21_CAR_Antagonist            |
| 2050 | TOX21_CAR_Antagonist_viability  |
| 103  | ATG_PXRE_CIS_up                 |
| 135  | ATG_PXR_TRANS_up                |
| 721  | NVS_NR_hPXR                     |
| 1474 | ATG_PXRE_CIS_dn                 |
| 1475 | ATG_PXR_TRANS_dn                |
| 2362 | TOX21_PXR_viability             |
| 2363 | TOX21_PXR_Agonist               |
|      |                                 |


ToxCast/Tox21 is so rich with assays to examine nuclear receptors and hepatic catabolism, but not all substances that activate these receptors and downstream metabolism cause thyroid effects *in vivo* (research/data gap).

The list of nuclear receptor related assays is still growing...

# ToxCast liver-related models contain indicators of Phase I and II metabolism and transporters

CellzDirect (CLD): fewer genes, ToxCast Phase I only

- ToxCast 320 Chemical Library
- Fresh Primary Human Hepatocytes
- 2 human donors
- 6 Reference Chemicals (Rif, PB, 3-MC, Fenofibric Acid, CDCA, CITCO)
- 5 receptors targets (AhR, CAR, PXR, PPARα, FXR)
- 2 endogenous control gene targets (GAPDH, Actin)
- 14 relevant gene targets
- 3 Time Points (6,24,48 hours)
- 5 Concentrations (.004, .04,0.4, 4, 40 μM)



#### LifeTech Expression Analysis (LTEA): HepaRG cells, 1060 substances

- Newly released in invitrodb version 3.3
- ToxCast Phase I and Phase II Chemical library
- 189 assay endpoints, including ~93 genes: biotransformation, transporters, cell cycle, disease state markers (inc microRNA), etc.
- Paper forthcoming from Wambaugh and colleagues

# Thyroid-relevant receptors: thyroid hormone receptor (TR), thyroid-stimulating hormone receptor (TSHR), and thyrotrophin-releasing hormone receptor (TRHR)

# Evaluating the hypothesis that the thyroid hormone receptor is less promiscuous than other steroid hormone receptors

#### Research

A Section 508-conformant HTML version of this article is available at https://doi.org/10.1289/EHP5314.

Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library

Katie Paul-Friedman,<sup>1</sup> Matt Martin,<sup>1</sup> Kevin M. Crofton,<sup>1</sup> Chia-Wen Hsu,<sup>2</sup> Srilatha Sakamuru,<sup>3</sup> Jinghua Zhao,<sup>3</sup> Menghang Xia,<sup>3</sup> Ruili Huang,<sup>3</sup> Diana A. Stavreva,<sup>4</sup> Vikas Soni,<sup>4</sup> Lyuba Varticovski,<sup>4</sup> Razi Raziuddin,<sup>4</sup> Gordon L. Hager,<sup>4</sup> and Keith A. Houck<sup>1</sup>

<sup>1</sup>National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

<sup>2</sup>Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA <sup>3</sup>National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, Maryland, USA

"National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, N <sup>4</sup>Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA

BACKGROUND: Thyroid hormone receptors (TRs) are critical endocrine receptors that regulate a multitude of processes in adult and developing organisms, and thyroid hormone disruption is of high concern for neurodevelopmental and reproductive toxicities in particular. To date, only a small number of chemical classes have been identified as possible TR modulators, and the receptors appear highly selective with respect to the ligand structural diversity. Thus, the question of whether TRs are an important screening target for protection of human and wildlife health remains.

OBJECTIVE: Our goal was to evaluate the hypothesis that there is limited structural diversity among environmentally relevant chemicals capable of modulating TR activity via the collaborative interagency Tox21 project.

METHODS: We screened the Tox21 chemical library (8,305 unique structures) in a quantitative high-throughput, cell-based reporter gene assay for TR agonist or antagonist activity. Active compounds were further characterized using additional orthogonal assays, including mammalian one-hybrid assays, coactivitator recruitment assays, and a high-throughput, fluorescent imaging, nuclear receptor translocation assay.

RESULTS: Known agonist reference chemicals were readily identified in the TR transactivation assay, but only a single novel, direct agonist was found, the pharmaceutical betamipron. Indirect activation of TR through activation of its heterodimer partner, the retinoid-X-receptor (RXR), was also readily detected by confirmation in an RXR agonist assay. Identifying antagonists with high confidence was a challenge with the presence of significant confounding cytotoxicity and other, non-TR-specific mechanisms common to the transactivation assay. Only three pharmaceuticals—mefenamic acid, diclazuril, and rissersta—were confirmed as antagonists.

DISCUSSION: The results support limited structural diversity for direct ligand effects on TR and imply that other potential target sites in the thyroid hormone axis should be a greater priority for bioactivity screening for thyroid axis disruptors. https://doi.org/10.1289/EHP5314

- Hypothesis: TR modulators represent limited structural diversity.
  - X-ray crystallography of TR isoforms suggests the need for high homology to thyroid hormone.
  - Few known TRβ therapeutic selective agonists and antagonists and with limited diversity.
  - Some *in vitro* reports of TR modulation, possibly via interaction with recruitment of corepressors/coactivators to the receptor complex.
  - Examples in the literature: OH-PCBs, OH-PBDEs, BPA and TBBPA.

#### Integrating multiple assay endpoints: agonism and antagonism of thyroid hormone receptor (TR) occurs with a limited number of substances

We tested the hypothesis that TR has a more restrictive ligand-binding pocket than estrogen and androgen receptors using Tox21 screening and follow-up assays.

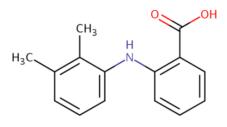
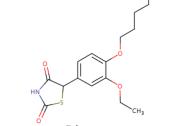

|                  |                                                | invitrodb: |                       |                        |              |
|------------------|------------------------------------------------|------------|-----------------------|------------------------|--------------|
| Assay short name | invitrodb: aenm                                | aeid       | Cell line             | Assay mode             | Function     |
| GH3-TRE-Ag       | TOX21_TR_LUC_GH3_A gonist                      | 803        | GH3-TRE-Luc           | Agonist                | Primary qHTS |
| GH3-TRE-Antag    | TOX21_TR_LUC_GH3_Antagonist                    | 804        | GH3-TRE-Luc           | Antagonist             | Primary qHTS |
| GH3-TRE-Via      | TOX21_TR_LUC_GH3_Antagonist_viability          | 805        | GH3-TRE-Luc           | Viability              | Cytotoxicity |
| GH3-TRE-Ag-      | TOX21_TR_LUC_GH3_A gonist_Followup             | 2226       | GH3-TRE-Luc           | Agonist                | Confirmation |
| Followup         |                                                |            |                       |                        |              |
| GH3-TRE-Antag-   | TOX21_TR_LUC_GH3_Antagonist_Followup           | 2227       | GH3-TRE-Luc           | Antagonist             | Confirmation |
| Followup         |                                                |            |                       |                        |              |
| TRb-bla          | TOX21_TRB_BLA_Antagonist_Followup_ratio        | 2240       | TRβ-UAS-bla HEK 293T  | Antagonist             | Specificity  |
| RXRa-bla-Ag      | TOX21_TR_RXR_BLA_Agonist_Followup_ratio        | 2253       | RXRa-UAS-bla HEK 293T | Agonist                | Specificity  |
| RXRa-bla-Antag   | TOX21_TR_RXR_BLA_Antagonist_Followup_ratio     | 2257       | RXRa-UAS-bla HEK 293T | Antagonist             | Specificity  |
| RXRa-Via         | TOX21_TR_RXR_BLA_Antagonist_Followup_viability | 2258       | RXRa-UAS-bla HEK 293T | Viability              | Cytotoxicity |
| TRa-coa          | TOX21_TRA_COA_Agonist_Followup_ratio           | 2230       | NA                    | Agonist                | Orthogonal   |
| TRb-coa          | TOX21_TRB_BLA_Agonist_Followup_ratio           | 2236       | NA                    | Agonist                | Orthogonal   |
| GFP-GR-TRb       | NA                                             | NA         | GFP-GR-TRβ MCF7       | Agonist and antagonist | Orthogonal   |

Table 1. Assay names (aenm) and assay end point identification (aeid) values used in the text and invitrodb database together with mode and purpose of assay.


Note: Ag, agonist; Antag, antagonist; bla, beta-lactamase; coa, coactivator; GFP, green fluorescent protein; GH3, rat pituitary cell line; GR, glucocorticoid receptor; HEK 293T, human embryonic kidney cell line; LUC, luciferase; MCF7, human breast cancer cell line; NA, not applicable; qHTS, quantitative high-throughput screen; RXRa, retinoid X receptor alpha; TRa, thyroid hormone receptor response element; UAS, upstream activating sequence; Via, viability.

#### Integrating multiple assay endpoints: agonism and antagonism of thyroid hormone receptor (TR) occurs with a limited number of substances

- 11 chemicals identified of 8,305 unique substances as putative direct TR ligands
  - 8 agonists
    - T3 analogs (see table to right)
  - Additional 9 chemicals, largely pharmaceuticals, that agonize RXR through TR:RXR heterodimer resulting in partial agonism in the transactivation assays (permissive heterodimer effect); no activity when RXR not present
  - 3 antagonists of higher confidence: pharmaceuticals, at concentrations exceeding therapeutic concentrations



Mefenamic acid (NSAID, some evidence of plasma TH effects in rats)

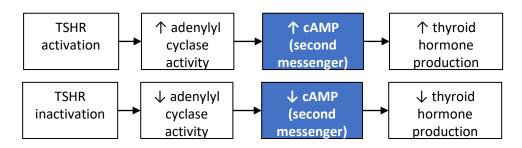


Risarestat (aldose reductase inhibitor for hypoglycemia assoc. with diabetes)



Diclazuril (anticoccidal used in poultry)

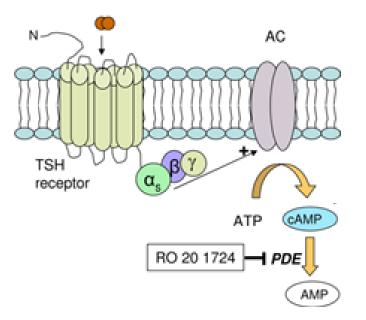
Chemical name CP-634384 3,5,3'-Triiodothyronine Levothyroxine


Tetrac 3,3',5'-Triiodo-L-thyronine Tiratricol 3,3',5-Triiodo-L-thyronine sodium salt Betamipron

Overall conclusion: work supports the hypothesis that TR is a very selective nuclear receptor.

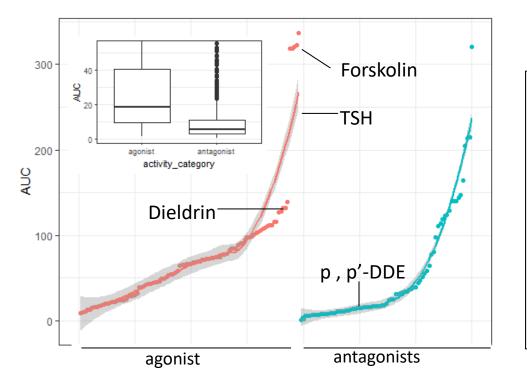

This work used a lot of expert judgment and substances with clear lead MOA were excluded from follow-up.

## **TOX21 TSHR** assay principle


| Aeid | Aenm                             |
|------|----------------------------------|
| 2040 | TOX21_TSHR_HTRF_Agonist_ratio    |
| 2043 | TOX21_TSHR_HTRF_Antagonist_ratio |
| 2046 | TOX21_TSHR_HTRF_wt_ratio         |



cAMP is the signal measured in this assay platform

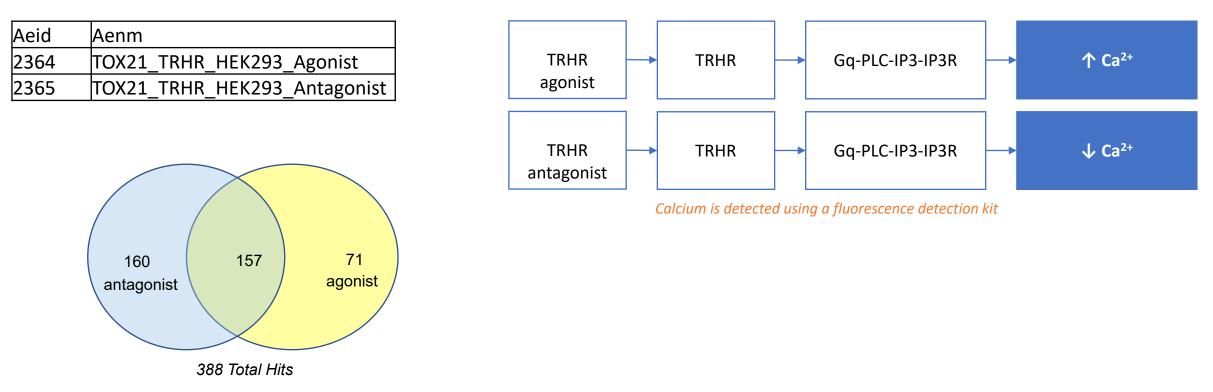



- TSHR is a GPCR with a few known agonists or antagonists.
- This assay measures agonism or antagonism for TSHR through the Gs-cAMP pathway.



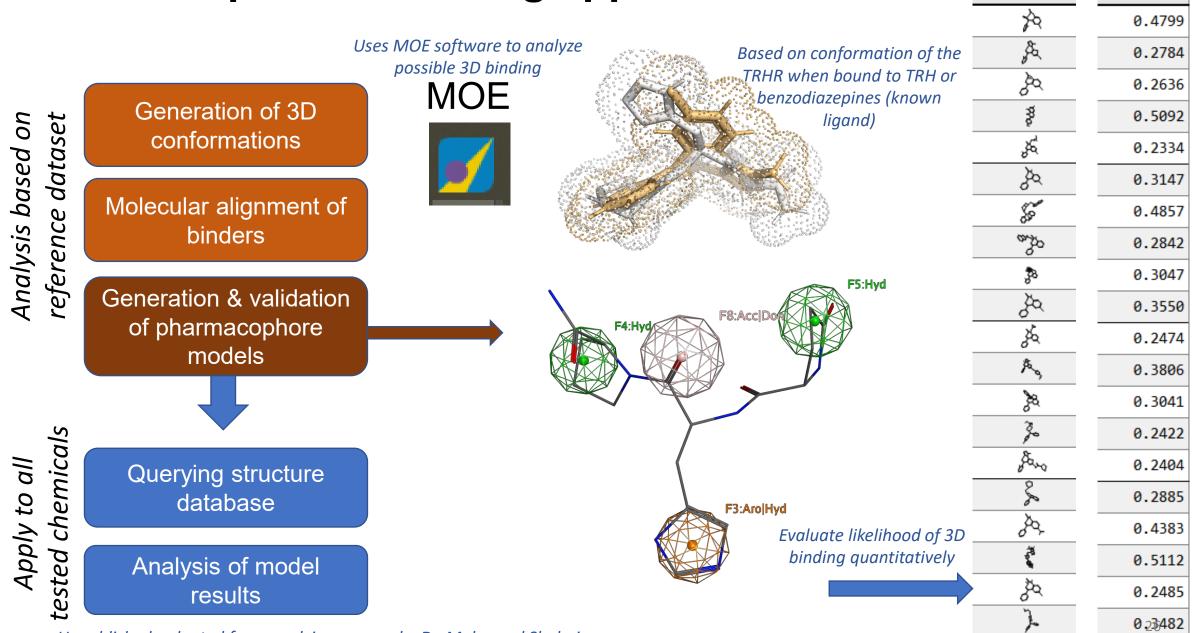
- Hits from the primary screen need to be confirmed or evaluated with orthogonal information.
- Assay interference may come from cytotoxicity, auto-fluorescent or blue dyes, agonists of other GPCRs may modulate cAMP, (e.g., B-adrenergic receptors) and other activators of adenylyl cyclase.

### **Context for interpretation and ongoing work**




Chemicals from agonist and antagonist modes were ranked according to the area-under-the-curve (AUC) of curve fits from concentration-response modeling using the tcpl package. Figure 1 shows the AUC values of the selected list for follow-up testing. **Forskolin** was expected to increase cAMP production and exhibits high activity, slightly higher than the native agonist **TSH**. **Dieldrin**, a suggested inverse agonist from the literature, shows activity in the 90<sup>th</sup> percentile of potential activators for TSHR.

Approach: Use area under the curve, information from the null/wildtype assay, selectivity (cytotoxicity), and chemical structure to select ~90 substances for confirmation follow-up of agonist and antagonist responses in a TSH-responsive model of biological complexity by Chad Deisenroth (US EPA).


Bottom-line: review the available TOX21 TSHR data with an eye to context until more confirmation is available.

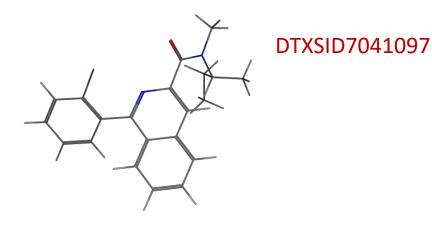
## **TOX21 TRHR** assay principle



- Hits from the primary screen need to be confirmed or evaluated.
- Potential sources of interference: auto-fluorescence, nonspecific calcium interference, nonspecific GPCR activity, etc.
- Ongoing work to contextualize these results using molecular docking approaches.
- View these hits as putative until additional confirmation can be used.

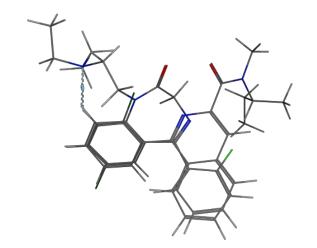
#### Pharmacophore modeling approach for TRHR




mol

rmsd

Unpublished; adapted from work in progress by Dr. Mahmoud Shobair


#### Example predicted TRHR inhibitor: PK-11195 (Moderate binder)

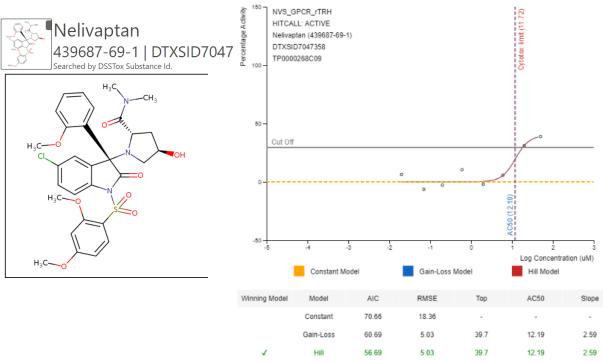
isoquinoline carboxamide binds selectively to the peripheral benzodiazepine receptor (PBR)



Midazolam, known TRHR binder DTXSID8047846

DTXSID804784




PK-11195 aligned to Midazolam

A limitation of this work is that the 3D modeling assumes the TRHR binding pocket in the native conformation.

## Assay principle of the NVS TRHR assay

| aeid | aenm          |
|------|---------------|
| 683  | NVS_GPCR_rTRH |

- Measures changes in scintillation (radioactivity) counts from [[3H]-(3methylHis[2])-TRH] binding to rat TRHR.
- TRHR from rat forebrain membranes.
- 1000 substances screened in multiconcentration—limited overlap in the screen with the TOX21 TRHR screen, and nearly no overlap in hits.
- 35/1000 are hitcall=1; some clear interference from organometallic substances and detergents; borderline or noisy activity; possibly other GPCR modulators. Most of these hits seem easy to dismiss when inspecting the curves.



Nelivaptan is one of the only credible putative hits, but it has clear PXR activity at lower concentrations. This drug was developed for another GPCR, vasopressin receptor V1B in the anterior pituitary gland that works to release ACTH, prolactin, endorphins.

# Examining a single substance using a weight-of-evidence approach



A generic workflow is illustrated here. For putative thyroid-related bioactivity, we might consider:

- the amenability of the substance for HTS screening and sample quality;
- Models or single assays available; and,
- Whether the activity is likely to be selective or not.

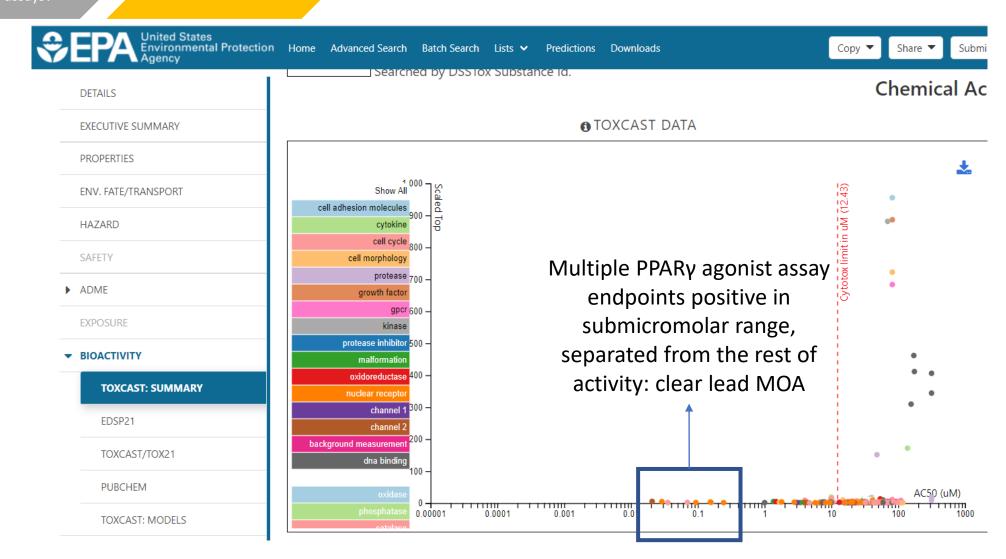
## Troglitazone

- Troglitazone
- Treatment for Type II diabetes, works primarily by activating PPARγ
  - Also involved in immune response via decrease in NF-KB
- Drug removed from market due to DILI, with several proposed mechanisms, including:
  - Mitochondrial toxicity [Electron transport chain inhibitor (Complex I) at low micromolar concentrations]
  - Inhibits of bile acid transport/cholestatic effects (e.g., BSEP)
  - Apoptosis
  - Formation of reactive metabolites/oxidative stress

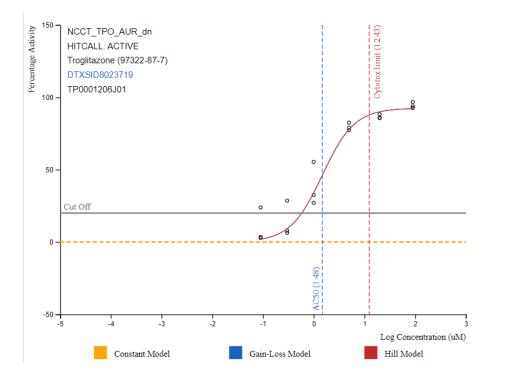
#### **Troglitazone: in domain of current screening?**

| Analytical chemistry:<br>was the chemical<br>present? | tion Home Advanced Search E |                        | 4 g/mol – likelj | y<br>Summar         | Copy   Share | Submit Comment     | CSearch all data   |              |
|-------------------------------------------------------|-----------------------------|------------------------|------------------|---------------------|--------------|--------------------|--------------------|--------------|
| PROPERTIES<br>ENV. FATE/TRANSPORT                     | La Download ▼ Column        |                        | unubinty         |                     | -            |                    |                    | Search query |
| HAZARD                                                |                             |                        |                  |                     |              | ss cell membrane   |                    |              |
|                                                       | Property 🗘                  | Experimental average 🗘 | -                | Experimental median |              | Experimental range |                    |              |
| SAFETY                                                | LogKow: Octanol-Water       | -                      | 4.94             |                     | 4.67         | -                  | 4.30 to 6.11       |              |
| ► ADME                                                | Melting Point               | 185 (2)                | 215              | 185                 | 184          | 184 to 185         | 150 to 313         | °C           |
|                                                       | Boiling Point               | -                      | 589              |                     | 657          | -                  | 397 to 714         | °C           |
| EXPOSURE                                              | Water Solubility            | -                      | 5.40e-6          |                     | 2.72e-6      | -                  | 8.75e-8 to 1.34e-5 | i mol/L      |
| ► BIOACTIVITY                                         | Density                     | -                      | 1.27             |                     | 1.27         | -                  | 1.27               | g/cm^3       |
| SIMILAR COMPOUNDS                                     | Flash Point                 | -                      | 330              |                     | 330          | -                  | 309 to 351         | °C           |
|                                                       | Vapor Pressure              | -                      | 7.20e-10         | <                   | 3.83e-11     | -                  | 7.24e-18 to 2.12e- | -9 mmHg      |
| GENRA (BETA)                                          | Surface Tension             | -                      | 51.0             |                     | Not volatile | -                  | 51.0               | dyn/cm       |
| RELATED SUBSTANCES                                    | Index of Refraction         | -                      | 1.61             |                     |              | -                  | 1.61               | -            |
|                                                       | Molar Refractivity          | -                      | 120              |                     |              | -                  | 120                | cm^3         |
| SYNONYMS                                              | Polarizability              | -                      | 47.8             |                     |              | -                  | 47.8               | Å^3          |
| ► LITERATURE                                          | Molar Volume                | -                      | 349              |                     |              | -                  | 349                | cm^3         |
| LINKS                                                 | LogKoa: Octanol-Air         | -                      | 9.68             |                     |              |                    | 9.68               | -            |
|                                                       | Henry's Law                 | -                      | 5.64e-9          |                     |              | _                  | 5.64e-9            | atm-m3/m     |

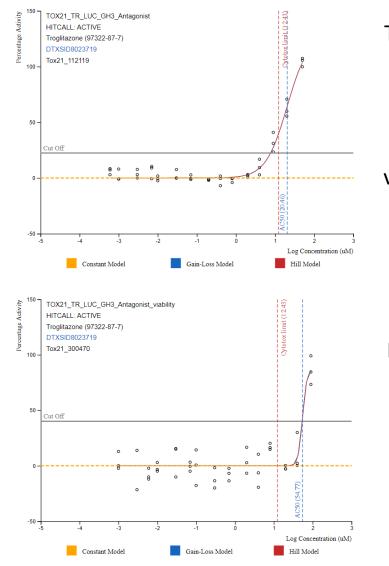
# Troglitazone seems to fit into the domain of screening based on chemistry


| present?             |                        | Select samples                       | ToxCast/Tox21<br>that were analyzed (the chemical in DI           | MSO stock) are high purity and conf                     |  |  |  |
|----------------------|------------------------|--------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| PROPERTIES           | QC Data ID             | Grade                                | Description                                                       |                                                         |  |  |  |
|                      | Tox21_112119           | Pass                                 | Purity>90% and MW confirmed                                       |                                                         |  |  |  |
| ENV. FATE/TRANSPORT  | Tox21_112119_1         | Pass                                 | Purity>90% and MW confirmed                                       | Purity>90% and MW confirmed Purity>90% and MW confirmed |  |  |  |
| HAZARD               | Tox21_300470           | Pass                                 | Purity>90% and MW confirmed                                       |                                                         |  |  |  |
| SAFETY ADME EXPOSURE | Active                 | I.nih.gov/tox21/samples/Tox21_112119 | ar 📀 Altmetric it! 🎯 ORD Graphics and 🛞 ORD@Work   💲 Request Reso | \$                                                      |  |  |  |
| BIOACTIVITY          | Tanguay Lab (0 of 19 s | ples / Tox21_112119                  |                                                                   |                                                         |  |  |  |
| TOXCAST: SUMMARY     | Tox21/NCGC (0 of 235   | Se                                   | ems stable under screening sample con                             | ditions (DMSO, room temp, 0-4 mo                        |  |  |  |
|                      | NHEERL Mid-Continen    |                                      | QC Grade                                                          | Identifiers                                             |  |  |  |
| TOXCAST/TOX21        | HG. J                  | OH<br>CH.                            | T0 A MW Confirmed, Purity > 90%                                   | Tox21 Tox21_112119                                      |  |  |  |
|                      |                        | СН                                   | T4 MW Confirmed, Purity > 90%                                     | NCATS NCGC00159457-01                                   |  |  |  |
|                      | ньс                    | >                                    |                                                                   | CAS                                                     |  |  |  |

32


#### But what bioactivity does troglitazone have?

Predictive or integrated models available? If not, single assays?


Selective or nonselective?

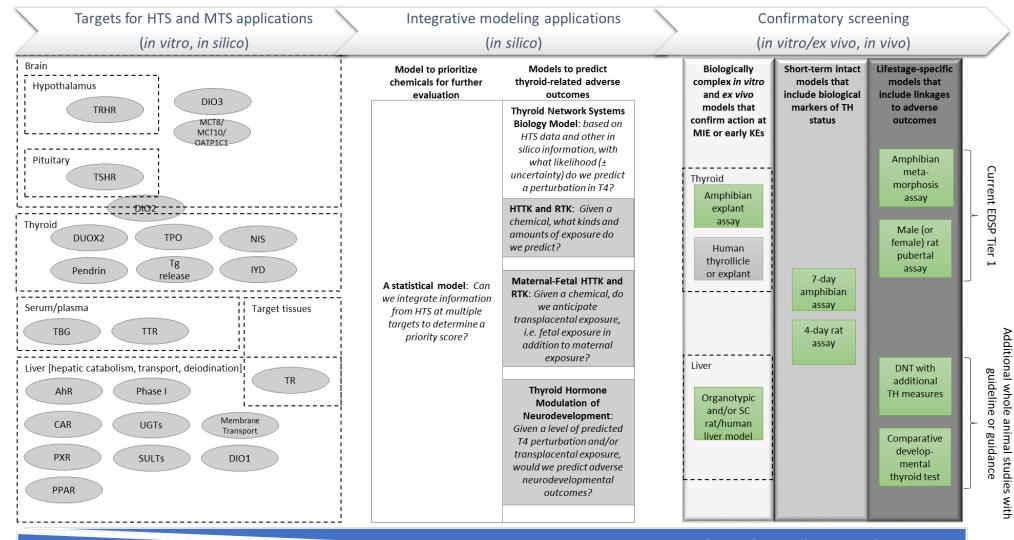


# It does have some putative thyroid-related bioactivity, but at concentrations that appear to exceed its lead MOA



The TPO inhibition curve is of a high quality and seems well separated from positive hits on cytotoxicity and nonspecific protein inhibition.
But the concentration that TPO inhibition occurs at is 10-100x the PPARg AC50s that range 0.02-0.2 from TOX21 and ATG assays.




There is a credible TR antagonist response with AC50~20 micromolar, versus cytotoxicity at ~50 micromolar. But this possible antagonism is at 100-1000X the PPARg AC50s that range 0.02-0.2 from TOX21 and ATG assays.

### Looking forward to data integration

- Multiple MIE and KE targets will need consideration.
- Several different integration and modeling approaches are possible.
- Distinguishing signal from assay interference or other confounders is critical for interpreting the data from thyroid-related HTS assays.
  - Importance of verifying "selectivity" even for cell-free assays
  - Use of multiple assays together to understand thyroid-relevant outcomes (versus other modes of action)

#### Future: HTS, model development, and confirmatory screening

Many of the MIE targets have MTS and HTS assays, <u>but</u> <u>efforts to evaluate</u> <u>the screening</u> <u>sensitivity and</u> <u>specificity of those</u> <u>screens are still in</u> <u>progress (e.g., TR,</u> <u>TRHR, TSHR).</u>



Throughput and uncertainty

Biological complexity and resources

### Acknowledgements

A huge team of people have contributed to the development, screening, and analysis of thyroid-related ToxCast and Tox21 data and thyroid-related projects.

**Key EPA ORD contributors:** Jason Brown Madison Feshuk Mahmoud Shobair Ann Richard Keith Houck Richard Judson lennifer Olker Jonathan Haselman Michael Hornung Sig Degitz Jun Wang Tammy Stoker Susan Laws Ashley Murr Angela Buckalew Daniel Hallinger **Steve Simmons** Chad Deisenroth Katie Paul Friedman Pamela Noyes Eric Watt And more...

#### Collaborators

Menhang Xia and Ruili Huang and others at National Center for Advancing Translational Sciences



Center for Computational Toxicology and Exposure (CCTE) Office of Research and Development (ORD) US Environmental Protection Agency