

An Inter-laboratory Case Study to Harmonize Zebrafish Light-Dark Transition Test to Predict Developmental Neurotoxicity

> YOUR **ZEBRAFISH** PARTNER

Arantza Muriana, R&D Director and CEO Biobide USA <u>muriana@biobide.es</u>

WC11 Session S309, August 25th 2021

The Problem: Regulatory need for DNT

Current test guidelines: OECD-426 and 443

- Very expensive and time consuming
- Human relevance unknown
- Only 150 compounds tested

Need for integrated testing battery for DNT

- Screening more chemicals
- As a first screening step for prioritisation
- Human relevance is essential
- Based on mechanistic knowledge and AOPs

OECD develops a guidance document for DNT

Background OECD guidance document (GD) - IATA

 Aim: description of an in vitro test battery for developmental neurotoxicity based on key processes:

How data could be interpreted and used to assess DNT

- Outline an integrated approach to testing and assessment (IATA) for the purposes for screening and prioritisation or for hazard assessment.
- The Zebrafish behavioral assay could be one of the tests.

Aschner et al., 2017

OECD Consortium Goals

- Determine the critical points of Zebrafish behavioral assay
- Design a harmonized protocol
- Re-evaluate the variables affecting the inter-laboratory reproducibility
- Establish a definitive Developmental Neurotoxicity (DNT) assessing protocol
- Determine the added value of the golden standard Light/Dark (L/D)Transition Assay in Zebrafish inside the in vitro battery of assays (IVB) for the OECD Guidance document.
- Same procedure for other Zebrafish assays

Added value of zebrafish to Guidance document /IATA

- High genetic homology with human > 80%
- Fast development / organogenesis
- Small size
- External fertilization and embryogenesis
- High productivity: 100-300 eggs/couple + week
- Direct administration of compounds to the medium of embryos
- Transparent embryos
 - Low cost
 - Fewer ethical impediments

- Fertilized

Two-cell stage

30% epiboly

Suitability of the model for human assays:

- Suitable screening for human drugs
- Models for efficacy and organ specific toxicity screens

Easy manipulation for assay development:

- Easily sourced model
- Statistically significant result, with small quantity of drug
- Visualization of results by dyes (fluorescence, antibodies, etc.)
- Suitable for applying automation, integration and image analysis for Phenotypic Screening

Wide utility:

- Cost / time efficiency
- Highly informative results

36 hpf

18 hpf

Stages of embryonic development of the zebrafish. Kimmel et al. 1995

Added value of zebrafish for DNT

- Complete and complex neuronal network (brain)
- Occurs within 3 days post-fertilization (dpf)
- Brain regions are well-conserved
- Neuronal subtypes well-conserved
- Zebrafish develops a Blood Brain Barrier (BBB)
- Thyroid axis is present and affects brain development

Kozol *et al.*, 2016

Zebrafish Developmental Process

METHOD DESCRIPTION

Experimental model

Zebrafish embryos strain expressing a green fluorescent protein in the heart

The study of the potential induction of developmental defects is desigend in two phases:

- Dose Range Finding (DRF)
- Developmental Toxicity Assay

The views expressed in this presentation are those of the authors and do not necesarily reflect the views or policies of the U.S. EPAI OECD I EFSA.

Specific endpoints analyzed at 2 dpf and 4dpf in the Developmental Toxicity Assay

		2dpf	4dpf
Malformation of the head	Jaw morphology		Х
	Microcephaly or abnormal head shape	Х	Х
	Microphthalmia/Cyclopia	х	х
	Edema	Х	х
Malformation of the otoliths			Х
Malformation of the heart	Edema/irregular shape	Х	Х
	Abnormal heartbeat	Х	х
Deformed body shape	Length	X	Х
	Curved/curled	X	X
	Notochord morphology	X	X
	Somite morphology	X	X
Malformation of the tail (including tail fins)		X	X
Yolk deformation	Edema	X	Х
	Yolk opacity	X	Х
Other		X	X

EC50 and LC50 is calculated and a Teratogenic Index (TI) established (ratio between LC50 and EC50) at 2 and 4 dpf to conclude about the teratogenic potential of each compound:

- Likely teratogenic: T(2) ≥ 2
- Toxic but not teratogenic: TI(2) < 2
- Not toxic in zebrafish embryos
 - → The higher the TI(2) value obtained, the higher probability of teratogenic effect

INTERNAL VALIDATION DATA

REFERENCE PRODUCTS	Classification*	Biobide Classification
Difenoconazole	Not teratogenic	NEGATIVE
Tebuconazole	Teratogenic	NEGATIVE
Penconazole	Teratogenic	NEGATIVE
Epoxiconazole	Teratogenic	POSITIVE
Flusilazole	Teratogenic	POSITIVE
Cyclopamine	Teratogenic	POSITIVE
Diniconazole	Teratogenic	POSITIVE
Voriconazole	Teratogenic	POSITIVE
Triadimenol	Teratogenic	POSITIVE
Myclobutanil	Teratogenic	POSITIVE
Metconazole	Teratogenic	POSITIVE
Propiconazole	Teratogenic	POSITIVE
Ipconazole	Teratogenic	POSITIVE

Internal validation testing agrochemicals tested in the Developmental Toxicity Assay:

Sensitivity: 83%Specificity: 100%

TRUE POSITIVE

TRUE NEGATIVE

FALSE POSITIVE

FALSE NEGATIVE

^{*}based on ECHA, CHP and other sources classification

REFERRAL DATA

- <u>Case Study 1</u>: NIH/NIEH Pilot trial of 10 compounds for the evaluation of developmental toxicity, behavior alteration and other toxicities in zebrafish embryos.
 - ✓ Summary of the evaluation of developmental toxicity:

		L (μM)	EC50		LC	50	TI	
Test item identification	2 dpf	4 dpf	2 dpf	4 dpf	2 dpf	4 dpf	2 dpf	4 dpf
2-Ethylexhyl diphenyl phosphate	>20	3	-	5.06 (4.89 to 5.24)	-	9.78 (very wide)	1	1.93
2,2'4,4'-Tetrabromodiphenyl ether	>25	2	-	12.01 (8.44 to 17.11)	-	>25	-	>2.08
3,3',5,5'-Tetrabromobisphenol A	1.5	1	1.81 (1.76 to 1.86)	1.48 (very wide)	3.26 (very wide)	1.9 (1.88 to 1.92)	1.8	1.28
Isodecyl diphenyl phosphate	300	20	474.3 (408.3 to 550.8)	77.23 (57.77 to 103.2)	>600	>600	>1.26	>7.77
Phenol, isopropylated, phosphate (3:1)	1	<1	4.3 (3.66 to 5.05)	1.8 (1.31 to 2.47)	>100	12.82 (11.97 to 13.73)	>23.26	7.12
tert-Butylphenyl diphenyl phosphate	8	4	11.45 (10.56 to 12.42)	4.75 (0.086 to 263.1)	84.15 (80.72 to 87.72)	15.24 (12.33 to 18.84)	7.35	3.21
Tricresyl phosphate	8	2	11.48 (11.4 to 11.56)	3 (2.78 to 3.24)	143.8 (107.2 to 192.9)	9.52 (9.46 to 9.57)	12.53	3.17
Triphenyl phosphate	2	1	3.84 (3.41 to 4.33)	1.72 (1.61 to 1.84)	15.11 (very wide)	5.15 (interrupted)	3.93	2.99
Tris(2-chloroethyl) phosphate	400	400	521.2 (462.8 to 587)	415.2 (very wide)	>1000	977.6 (very wide)	>1.92	2.35
Tris(1,3-dichloro-2-propul) phosphate	3	2	4.11 (3.68 to 4.58)	3.08 (2.79 to 3.4)	8.29 (7.15 to 9.61)	6.53 (5.07 to 8.4)	2.02	2.12

Alzualde A., et al. 2018

REFERRAL DATA

- Case Study 2: screening of 32 compounds of interest to the National Toxicology Program (NTP) with known or hypothesized developmental toxicity or neurotoxicity for an overall assessment of systems toxicity in zebrafish embryos
 - ✓ Compounds with suspected developmental toxicity

		DE	VELOPMENT	AL TOXIC	ITY	CARDIOTO	XICITY	BEHAV	IOR	HEPATOTO	XICITY	ототох	ICITY
LogP	COMPOUND NAME	2 dpf FC ₅₀ /LC ₅₀	4 dof EC ₅₀ /LC ₅₀	TI class.	Internal dose	Effect	Conc	Effect	Conc	Effect	Conc	Effect	Conc
4.68/5.08	Methoxyclor	9.34/>100	1.01/3.28	1	>100%	texto	3	neuroactive	from 0.1	-	10	-	1
4.1/5.14	Vinpocetine /	0.42/8.70	0.36/4.96	1	>100%	cardiotoxic	from 1	hypoactivity	from 1	-	10	-	1
4.50/4.72	Dibutyl phthalat	2.09/5.29	1.81/2.93	1	>100%	-	.30	neuroactive	10	-	10	-	10
4.47	Bisphenol AF	10.44/27.97	4.12/8.53	1	>100%	bradycardia	from 10	hypoactivity	from 3	-	10	-	10
5.8	Di-n-Pentyl phthalate	7.54/18.14	4.27/4.75	1	13-18%	cardiotoxic	from 30	-	10	hepatotoxic	10	ototoxic	100
4.9	HPTE	20.01/42.41	7.97/15.43	1	>100%	bradycardia	from 10	hypoactivity	10	-	10	-	10
3.2	Linuron	18.23/41.77	15.05/29.16	1	>100%	bradycardia	from 10	-	10	-	10	-	.30
2.9*	Trypan blue	(2000)	1064/1558	2	N.D.	-	100	hypoactivity	from 100	-	1000	-	100
-0.07	Caffeine	318.6/>2000	126.2/>2000	1	~100%	-	100	hypoactivity	from 300	-	1000	-	100
2.75/2.8	Valproate	289.8/1961	173.2/744.6	1	4-10%	-	100	-	300	-	300	-	100
1.46	Prednisone	(1000)	(750)	-	0.1%	-	100	neuroactive	200	-	2000	-	100
0.23	4-Methylimidazole	(2000)	1518/>2000	3	~100%	-	100	neuroactive	2000	hepatotoxic	1000	-	100
1.19	Aspirin	1656/>2000	1555/1726	/2	1-2%	-	100	-	2000	hepatotoxic	2000	-	100
0.175/-1.9	Boric acid	(2000)	(2000)	 	>100%	-	100	-	2000	-	2000	-	100
0	Trimethadione	(2000)	(2000)	/.	1%	-	100	-	2000	-	2000	-	100
-1.1	Gabapentin	(2000)	(2000)	/ -	0.5%	-	100	-	2000	-	2000	-	100
0.1	Dimethadione	(2000)	(2000)		3%	-	100	-	2000	-	2000	-	100
-0.31/-0.32	Ethanol	(2000)	(2000)	-	N.D.	-	100	-	2000	-	2000	-	100

N.D.: not detected; Italic numbers indicate the maximum concentration tested without effect

Effect described in other animal models or humans

Quevedo C. et al. 2018.

Behaviour Alteration Assay

Behaviour Alteration Assay

- Zebrafish are a diurnal specie
- Regulated by Homeostatic and circadian mechanisms
- Highly conserved circadian system
- Melatonin: principal hormone involved
 - 1dpf → aanat2 gen expression and melatonin synthesis.
 - 2dpf → circadian clock-controlled rhythms.
 - 4dpf → stable diurnal rhythm of locomotor activity.
- Detectable effects in treated embryos:
 - Basal activity with light and \wedge activity when lights off, but habituation to darkness.
 - Hypoactivity mainly in dark periods
 - Hyperactivity mainly in light periods
 - Reaction to environmental changes (lighting): hypoactivity / hyperactivity

A Behavioral alteration: hyperactivity

C Behavioral alteration: profile alteration

Neurotoxicity Assay

INTERNAL VALIDATION DATA

Internal validation testing chemicals in the Standard Neurotoxicity Assay:

SENSITIVITY: 95%

SPECIFICITY: 100%

TRUE POSITIVE

TRUE NEGATIVE

FALSE POSITIVE

FALSE NEGATIVE

COMPOUND	Therapeutic Classification	Adverse effects in human CNS	Results
5-Fluorouracil	Antineoplasic-cytotoxic	-	TN
Acetaminophen	Acetaminophen Analgesic-Antipyretic		TN
Acetylcysteine	Mucolytic	-	TN
Artemisinin	Antimalaric	+	TP
Ascorbic Acid	Antioxidant	-	TN
Carbamazepine	GABA enhancing anxiolytic	+	TP
Chlorambucil	Alkylating antineoplastic	+	TP
Chloroquine	Antimalaric	+	TP
Dexamethasone	Anti-inflammatory	+	FN
Dieldrin	GABA receptors antagonist	+	TP
Disopyramide	Anti-arrhythmic	+	TP
Dopamine	Neurotransmitter	-	TN
Fluoxetine	SSRI antidepressant	+	TP
Foscarnet	Antiviral	+	TP
Halofantrine	Antimalaric	+	TP
Haloperidol	Antipsychotic	+	TP
Indirubin-3'-oxime	CDKs and GSK3B inhibitors	+	TP
Mefloquine	Antimalaric	+	TP
MPTP	Neurotoxin	+	TP
Norepinephrine	Hormone / Neurotransmitter	-	TN
PTZ	GABA antagonist	+	TP
Sotalol	Anti-arrhythmic	-	TN
Sucrose	Negative control	-	TN
Tacrine	Anticholinesterase	+	TP
Tetracycline	Antibiotic	+	TP
Thalidomide	Immunomodulatory	+	TP
Valproic Acid	Anticonvulsant	+	TP
Warfarin	Anticonvulsant	-	TN

REFERRAL DATA

 <u>Case Study 3:</u> Developmental toxicity and Neurotoxicity of 91 compounds from NTP assessed blinded using zebrafish embryos.

		Classification		
Number of chemicals	Toxic	Neurotoxic	Not detected toxicity	
Suspected to be neurodevelopmental toxic	29*	89,6% (26/29)	48,3% (14/29)	10,4% (3/29)
Chemicals with unknown effect		94,3% (33/35)	25,79% (9/35)	5,7% (2/35)
Negative controls	5*	0%	0%	100% (5/5)

Alzualde A. et al. 2018.

REFERRAL DATA

- Case Study 3:
- Developmental toxicity detected in n = 35/91, three in duplicates.
- 37.1% of test items also neuroactive (one in duplicate) or neurotoxic.

			Neurot	oxicity	D evelop m ent altoxicity			
		Testitem identification	Effect	LOAEL (μM)	Classi- fication	LO. treat conc	AEL embryo conc	
1937	PE-2028	Benzo(k)fluoranthene	neuroactive	0.5	1	0.1	2.67	
1814	1	Permethrin	neuroactive	0.5	1	2	14.26	
1109		Acenaphthene	neuroactive	15	1	30	60.78	
1324		Lindane	neuroactive	0.5	1	4	504.7	
1092		Dieldrin	neuroactive	0.05	1	0.5	567.8	Г
1401	PE-2049	Dichlorodiphenyltrichloroethane (DDT)	neuroactive	0.5	1	2	1052	_
1994		Parathion	neuroactive	8	1	8	1531	
1453		Heptachlor	neuroactive	0.5	1	8	2068	_
1918		Chlorpyrifos (Dursban)	neuroactive	1	1	5	22.62	Г
1445		Deltamethrin	neuroactive	0.025	1	0.05	ND	
1174	1	Deltamethrin	neuroactive	0.005	1	0.1	ND	_
1705		Diazepam	toxic	15	1	8	47.73	
1262		Tebuconazole	toxic	10	1	20	556.4	
1215		Tetraethyl thiuram disulfide	toxic	0.3	1	0.3	ND	
1701		Lead (II) acetate trihydrate	toxic	5	1	2	32.33	
	PE-2053 -1	Zear (II) a zear zear zear y ar a ze					175.2	
1798		Firemaster 550	toxic	2	1	1	275.8	
	PE-2053 -3			_	_	_	107.8	
1664		Methyl mercuric (II) chloride	toxic	1	1	0.3	114.4	
1365		Triphenyl phosphate	toxic	2	1	1	125.5	Ι
1241	PE-2081	Triphenyl phosphate	toxic	1	1	2	143.4	
1966		3,3',5,5'-Tetrabromobisphenol A	toxic	1.5	1	1.5	201.4	Г
1121	PE-2003	Tricresyl phosphate	toxic	10	1	10	622.5	
1910		tert-Butylphenyl diphenyl phosphate	toxic	2	1	4	1275	
1766	-	Pyrene	toxic	2	1	2	1643	
1864		Bis(tributyltin)oxide	toxic	0.1	1	0.05	ND	H
1578		Carbaryl	toxic	4	1	4	ND	H
1370	PE-2071-1	ear bar ye	COXIC	i i	-	·	105.2	
1647		Phenol, isopropylated, phosphate (3:1)	no toxic	>0.5	1	0.5	83.83	
	PE-2071-3	,			_		19.14	
1116		Diethylstilbestrol	no toxic	>1	1	1	35.34	
1205		Bisphenol AF	no toxic	>3	1	2	62.91	
1118		Methyl mercuric (II) chloride	no toxic	>0.5	1	0.2	75.98	-
1424		Estradiol	no toxic	>10	1	10	472.5	l
1614		Acenaphthylene	no toxic	>15	1	15	887.8	l
1713		Bisphenol A	no toxic	>20	1	15	1247	l
1532		Phenanthrene	no toxic	>15	1	10	22.70	
1427		4-H-Cyclopenta(d,e,f)phenanthrene	no toxic	>10	1	8	2403	l
1831	1	2.3.7.8-Tetrachlorodibenzo-p-dioxin	no toxic	>0.0003	1	0.0003	ND	l
	PE-2020	Aldi carb	no toxic	>1	1	1	ND	Г
1231								
1231 1090		Dibenz(a,h)anthracene	no toxic	>2	1	0.3	ND	Н

REFERRAL DATA

- Case Study 3:
- 9/91 were toxic but not teratogenic compounds.
- 33.3% were neuroactive compounds
- Limited uptake except neuroactive compounds and TCPP
- 6/91 were inconclusive for developmental toxicity, due to precipitation event.

		•	Neurot	oxicity	Developmental toxicity			
		Test item identification	Effect LOAEL (uM		Classi-	LO	AEL	
				LOAEL (μM)	fication	treat conc	embryo conc	
1881	PE-2054	Fluorene	neuroactive	4	2	20	1418	
1196	PE-2001	2-Ethylhexyl diphenyl phosphate (EHDP)	neuroactive	3	2	10	852.3	
1786	PE-2042	Colchicine	toxic	50	2	100	1.05	
1208	PE-2037	Captan	no toxic	>50	2	75	ND	
1707	PE-2038	Carbamic acid, butyl-, 3-iodo-2-propynyl este	no toxic	>1	2	1	ND	
1718	PE-2073	Rotenone	no toxic	>0.1	2	0.1	ND	
1938	PE-2083	Valinomycin	no toxic	>0.075	2	0.05	ND	
1499	PE-2085	tris(Chloropropyl) phosphate, TCPP	toxic	75	2	75	87.15	
1501	PE-2056	Hexachlorophene	toxic	0.5	2	0.3	ND	

				oxicity	Developmental toxicity			
	Test item identification		Effect	LOAEL (μM)	Classi-	LOAEL		
			Ellect	LOAEL (μΜ)	fication	treat conc	embrvo conc	
1965	PE-2084	Valproic acid sodium salt	neuroactive	50	4	75	154.7	
1367	PE-2006	2,2',4,4'-Tetrabro modiphenyl ether	neuroactive	2	4	20	780.3	
1024	PE-2065	Naphthalene	no toxic	>100	4	100	5.16	
1784	PE-2026	Benzo(b)fluoranthene	no toxic	>10	4	60	29.24	
1655	PE-2024	Benz(a) anthracene	no toxic	>4	4	4	51.20	
1301	PE-2058	Iso decyl diphenyl phosphate	toxic	50	4	50	229.8	

Zebrafish tests - Endpoints

Study Design for Neurodevelopmental Toxicity

We propose to assess the potential Developmental NeuroToxicity (DNT) effect of a number of products from the NTP's chemicals list

DNT Study Design

- DRF: with ZF AB strain 5 embryos/well, 2 wells/conc., 5 conc/compound in P24, n=10, DMSO=0.5% – 1%
- 2 Developmental toxicity

3 hpf zebrafish embryos treated with 5-8 concentrations per compound, 15 embryos/condition in 96 well format Static exposure and chorionated embryos – Fish Embryo Toxicity Test (FET) -----LOAEL identification

3 Neurotoxicity

Embryos at 3 hpf exposed to 5 concentrations/compound, 16 embryos/condition in 96 well plates, at 28°C, 10hr:10hr (light:dark)

4 (Internal dosing)

Determination of internal exposure to the chemicals by HPLC-MS or another appropriate technique.

Phenotypic Evaluation

2 Protocols

- FET Fish Embryo Toxicity test (Phase 1)
- Light-dark transition test (Phase 2)

Phenotypic observations 120 hpf

Behavioural 120 hpf distance travelled in light dark "startle" response

- Danio rerio AB strain
- 96 well forma round vs squared
- Chorionated embryos FET
- Buffered media
 (10 mM pH7.2 HEPES E3 media)
- **Static** exposure
- 28°C, 14hr:10hr (light:dark)

The DNT ZF Group Members: International Experts

	INSTITUTE/COMPANY	COUNTRY	PEOPLE
biobide	Biobide	Spain	Ainhoa Alzualde; Arantza Muriana
NIH 6	Division of the National Toxicology Program, NIH	USA	Jui-Hua Hsieh; Kristen Ryan; Mamta Behl
Notional Toxicology Program	European Food Safety Authority (EFSA)	ltaly	Andrea Terron (General coordinator)
lease facts/e, taken	Health Canada / Government of Canada	Canada	Cindy Woodland
UFZ	Helmholtz Centre for Environmental Research GmbH - UFZ	Germany	Nils Klüver
RIVM	National Institute for Public Health and the Environment (RIVM)	Netherland	Ellen Hessel (Coordinator Zebrafish Group)
or one:	National Research Council of Canada	Canada	Lee Ellis
Oregon State University	Oregon State University	USA	Lisa Truong; Robyn Tanguay
(3)	Organization for Economic Co-operation and Development (OECD)	France	Magdalini Sachana
SEPA (Care care	U.S. Environmental Protection Agency	USA	Bridgett Hill; Stephanie Padilla; Tim Shafer
VU	VU University Amsterdam	Netherland	Jessica Legradi
Ze	ZeClinics	Spain	Valentina Schiavone; Davide Rubbini; Vincenzo Di Donato; Javier Terriente

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA I OECD I EFSA.

Phenotypic Evaluation

Protocol: 28 Compounds

Chemical Name	CAS	Chemical Name	CAS
3,3',5,5'-Tetrabromobisphenol A	79-94-7	tert-Butylphenyl diphenyl phosphate	56803-37-3
Acetamiprid	135410-20-7	2-Ethylhexyl diphenyl phosphate	1241-94-7
Allethrin	584-79-2	Aldicarb	116-06-3
Benomyl	17804-35-2	Chloramben	133-90-4
Diazinon	333-41-5	Chlorpyrifos	2921-88-2
Heptachlor	76-44-8	Cypermethrin	52315-07-8
Nicotine	54-11-5	Deltamethrin	52918-63-5
Parathion	56-38-2	Dieldrin	60-57-1
Permethrin	52645-53-1	Dimethoate	60-51-5
Trichlorfon	52-68-6	Kepone	143-50-0
Triphenyl phosphates isopropylated	68937-41-7	Methyl parathion	298-00-0
Tris(1,3-dichloro-2-propyl) phosphate	13674-87-8	Thiacloprid	111988-49-9
Tris(2-chloroethyl) phosphate	115-96-8	Tri-o-cresyl phosphate	78-30-8
Tris (2-chlorois opropyl) phosphate	13674-84-5	Tris (methylphenyl) phosphate	1330-78-5

Example of the data obtained

Morphology data

- Morphological Change/Dead observed
- Swim-Bladder Issue
- Larvae included Y/N

DNT data

- Distance moved (every minute)
- Velocity (every minute)

(*) On 750 wild type embryos from 50 different plates

Example of the data obtained

Dark&Light

Data Analysis

- Application of Bench Mark Dose (BMD) modeling
 - Focus on dose-response trend and onset of the response
 - Used in quantitative risk assessment
- Evaluate the <u>direction</u> and <u>amount</u> of movement during light/dark stimulation (vs vehicle control)
- Evaluate the similarity of the movement <u>pattern</u> across experiment (vs vehicle control)

Swim Bladder (SB) issue affected by well volume

Data UFZ Nils Klüver

Towards Protocol Harmonization: Swimming Bladder

1. Inter-lab difference for proper swim bladder inflation

Legend:

- normal swim bladder (0 orange bars)
- uninflated swim bladder (1 blue bars)

Lab1 (3/12), Lab2 (9/12), Lab3 (12/12), Lab4 (2/12) (normal / total)

2. Significant (Wilcoxon test) distance moved difference between embryos with and without swim bladder issue

Embryos with swim bladder issue present:

- Increased distance moved in D phases
- Larger movement variation in L phases

Data Analysis Jui-Hua Hsieh (NTP)

A unified data processing Pipeline

A unified data processing Pipeline

EXPERIMENT #1

Round 96 well plate – 300 uL

(Control) Swim bladder present:71 (SB) Swim bladder absent: 15

Square 96 well plate – 600 uL

* The plates were not sealed

minutes

(Control) Swim bladder present:74

(SB) Swim bladder absent: 1

Questions answered

Questions answered

PILOT STUDY RESULTS

Conclusions of the Pilot study

- Zebrafish behavior models can have an added value to the OECD guidance document for DNT.
- Volume in well plate affects swim bladder inflation.
- Harmonization of the Protocol is essential.
- Inter-laboratory replication is a challenge.
- Key players in the field working together to develop a harmonized protocol for the Light-Dark transition test.
- In future Protocols for other zebrafish tests for DNT can be also harmonized.

Planning case study, data analysis and discussion

- Discussion where in the Guidance Document (GD) does the zebrafish assay fit
 - General description of the zebrafish in the GD
 - ✓ Human relevance
 - ✓ Endpoints measured
 - Protocol as addendum
- Discuss draft GD zebrafish and what is further needed
- 4 laboratories 4 finished
- Data analysis done
- Extra studies in 2 different labs can be done if needed
- Planning to finish after summer and have a final Protocol
- Start with other zebrafish assays (if needed)

Phase 3 – Definitive Study

DNT IATA CASE Test Method for Zebrafish-Inter-laboratory Validation

PHASE 1
Dose-range finding

PHASE 2
Behavioral Assay: test and optimization

PHASE 3 Definitive study

- Detailed data analysis
- Compare data among the labs and published data
- Concordance with other model systems for DNT
- Recommendations future studies
- Final Protocol for OECD Guidance Document

BIOBIDE is a Contract Research Organization (CRO) with more than 16 years' experience specialized in the zebrafish animal model, offering TAILOR MADE pre-clinical services to Pharmaceutical, Biotech, Chemical, Cosmetic and Tobacco companies under Good Laboratory Practices (GLPs) environment and 3Rs.

TARGET VALIDATION

DISEASE MODELS

GENERATION

EFFICACY

ASSAYS

ONCOLOGY MUSCULAR DISEASES

METABOLISM CNS

CARDIOVASCULAR RARE DISEASES

TOXICITY

ASSAYS

ACUTETOX DEVELOPMENTAL TOX NEUROTOX

CARDIOTOX HEPATOTOX OTOTOX **IMMUNOTOX NEPHROTOX**

ECOTOX

OTHERS

Services tailored to your needs

THANK YOU VERY MUCH

Biobide Spain

Gipuzkoa Scientific & Technological Park Pº Mikeletegi 56, 20009 San Sebastián, Spain.

Biobide USA

1 Broadway, 14th floor Cambridge, MA 02142, USA. muriana@biobide.com

+34 943 309 360 (Spain) +1 617 659 0295 (USA)

www.biobide.com