

Neurotoxicity

www.epa.gov

Introduction

Background:

- A 15-year international-coordinated research effort has been under way to develop a battery of *in vitro* developmental neurotoxicity new approach methodologies (DNT-NAMs) to inform the understanding of DNT-related bioactivity.
- Here, we describe the collective performance of a subset of DNT-NAMs developed at the US-EPA for describing putative DNT-relevant bioactivity for 92 chemicals, including 48 reference DNT positives and 11 putative DNT negatives.

Aims:

- Evaluate the performance of DNT-NAMs assay controls:
 - Activity of assay performance controls
 - Replicability of chemical repeats
 - Reproducibility/ variability: Coefficient of variation (CV) of DMSO controls and Z'-factor of assay positive controls.
- Reveal patterns of potency and selectivity for the 92 substances using hierarchical clustering to inform the understanding of DNT-related bioactivity, with the goal of elucidating adverse outcome pathways for DNT outcomes.
- Determine the accuracy of the DNT-NAM battery in classifying 49 DNT reference positives and 11 putative negatives, with the goal of identifying the most influential assay endpoints.

DNT-NAM battery for key neurodevelopmental processes

Assay technology	Chemicals screened	Cell culture model	Assay/ key neurodevelopmental events	Endpoints measured	
Microelectrode array (MEA)	92 (+28 repeats)	Primary rat cortical neurons (DIV 5, 7, 9, 12)	Network Formation assay (NFA); Decreasing neuronal activity	17	
			Increasing neuronal activity	17	
			Cytotoxicity	2	
High-content	92	Primary rat cortical neurons	Neurite outgrowth (NOG)	4	
imaging assays (HCI)			Synaptogenesis and Neurite maturation	8	
		Human hN2 neural cells	NOG	4	
		Human hNP1 Proliferation		3	
		neuroprogenitors	Apoptosis	2	

U.S. Environmental Protection Agency

Office of Research and Development

С.

Cell

Evaluating potency collectively informs DNT-relevant bioactivity.

Evaluation of *in vitro* New Approach Methodologies for Developmental

Kelly E. Carstens^{1,2}, Amy Carpenter^{1,2}, Melissa Martin², Joshua A. Harrill², Timothy Shafer², Katie Paul Friedman²

¹ORISE Postdoctoral Research Participant ²Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency

DNT-NAM battery with performance controls

The activity of DNT-NAM assay performance controls performed as expected with positive controls demonstrating increased activity and the negative controls demonstrating little to no activity in the battery.

> A. Heatmap of NFA performance controls **Color key:** activity concentration at 50% maximum activity (AC₅₀ values) for each assay endpoint

Positive controls: bisindolylmaleimide I, mevastatin, loperamide HCl, L-domoic acid, and sodium orthovanadate) **Negative control**: acetaminophen

- **B.** Heatmap of HCI assay positive controls Color key: AC₅₀ values
- . The CV of DMSO-treated control wells indicates assay reproducibility, the Z'-factor of known assay positive controls indicates variability in efficacy and reproducibility.

eral	MEA_dev_firing_rate_mean	21.26							
itv	MEA_dev_burst_rate	20.52	Loporamido HCI	0.55					
ity.	MEA_dev_active_electrodes_number	8		(0.29-0.89)	J.29-0.89)				
	MEA_dev_bursting_electrodes_number	10.21			HCI	Endpoint	DMSO CV	Chemical	7'
tina	MEA_dev_per_burst_interspike_interval	24.23	Bisindolylmaleimide I	0.8 Apo (0.33-0.94) via		HCL hNP1 Cash3 7 gain	3.8	Staurosporine	0.8
	MEA_dev_per_burst_spike_percent	10.4			Apoptosis/		5.0	Stadiospolitie	0.0
	MEA_dev_burst_duration_mean	25.27			viability	HCI_hNP1_CellTiter_loss	1.96	Staurosporine	0.75
itv	MEA_dev_interburst_interval_mean	21.88				HCI_hNP1_Pro_MeanAvgInten_loss	12.72	Aphidicolin	0
ity	MEA_dev_network_spike_number	23.04	L-Domoic acid	0.78	Droliforatio	HCI_hNP1_Pro_ObjectCount_loss	8.51	Aphidicolin	0
ork	MEA_dev_network_spike_peak	8.08		(0.26-0.94)	FIOINEIalio	HCI_hNP1_Pro_ResponderAvgInten_	Aphidicolin	0 1	
	MEA_dev_spike_duration_mean	13.92				loss	S TT.9 Aprilaicolin		0.1
nectivity	MEA_dev_network_spike_duration_std	23.91		0.64		HCI_hN2_NOG_BPCount_loss	13.52	Lithium chloride	0
loounty	MEA_dev_per_network_ spike_interspike_interval_mean	26.4	wevastatin		NOG 6N2	HCI_hN2_NOG_NeuriteCount_loss 3.63 Lithium	Lithium chloride	0.38	
	MEA dev per network spike spike number mean	16.99		(-0.17-0.00)	HCI_hN2_NOG_NeuriteLength_loss 7.15 Li	Lithium chloride	0.58		
		18 76				HCI_hN2_NOG_NeuronCount_loss 13.47 Lithium chloride		Lithium chloride	0
	MEA_dev_per_network_spike_spike_percent	10.70	Sodium orthovanadate			HCI_Cortical_NOG_NeuriteLength_loss 8.42 Bisindolylm HCI_Cortical_NOG_NeuronCount_loss 7.6 Bisindolylm	Bisindolylmaleimide I	0.31	
viability	MEA_dev_correlation_coefficient_mean	15.67		0.74	NOG rat		Bisindolylmaleimide I	0	
	MEA dev mutual information norm	21.38		(0.08-0.9)	(0.08-0.9) HCl_Cortical_NOG_BPCount_loss	8.36	Lithium chloride	0.06	
	MEA_dev_LDH	8.06			CUITICAI	HCI_Cortical_NOG_NeuriteCount_loss	7.6	Lithium chloride	0
	MEA dev AB	6.93				HCI_Cortical_NOG_NeuriteLength_loss	8.42	Lithium chloride	0.3

Activity Type NOG initiation, rat Synaptogenesis/maturatio **—** NOG initiation, hN2 Cytotoxicity HCI Proliferation, hNP² Cytotoxicity General MEA up Bursting Network Connectivity

<u>**Color key**</u>: Potency (AC₅₀ values): Yellow = screened negative; Teal = 1-100 µM; Dark blue = 0.0001-0.01 µM

Row label bar (left): DNT reference positives (black) and negatives (gray) Activity-type (columns):

Cluster 1: Decreased network formation activity, synaptogenesis/ neurite maturation. Cluster 2: Decreased NOG (rat or hN2 cells), proliferation, synaptogenesis/ neurite maturation, and increased apoptosis. Cluster 3: Increased network formation activity.

Chemicals (rows):

Cluster 1: Little to no activity chemicals. **Cluster 2:** High activity and potency chemicals. Cluster 3: Moderate activity and lower potency chemicals

Classifying DNT Reference Chemicals

		Negatives (11)	Positive
Results from DNT-NAM battery	Potent and high activity (Clusters 2,3)	False positive: 0	True posit
	Inactive/ equivocal (Cluster 1)	True Negative: 11	False nega

Sensitivity= 65%, Specificity= 100%, Accuracy= 72%

Society of Toxicology Annual Meeting

Kelly E. Carstens I Carstens.kelly@epa.gov I 919-541-3834

Selective bioactivity reveals possibly relevant patterns of activity.

NOG initiation, rat

NOG initiation, hN2 Proliferation, hNP1

Network Connectivity

General

MEA up

Bursting

es (49) tive: 32

ative:17

- A. Selectivity: area under the curve (AUC) at concentrations lower than the cytotoxicity AC50.
- **B.** Heatmap of DNT-NAM battery selectivity.

<u>Color key</u>: selectivity AUC (purple = high, pink = low to medium, yellow = negative or no selective activity Row label bar (left): DNT reference positives (black) and negatives (gray) Chemicals (rows): Hierarchical clustering reveals approximately five main chemical clusters.

Classifying DNT Reference Chemicals by Cluster

			DNT Reference		
	Strong selectivity	Moderate selectivity	Negative	Positive	
1	Proliferation, synaptogenesis, NOG (hN2 cells)	NOG (rat cortical), firing rate, burst rate, and spike number	0	14	
2	Decreased network formation activity	Synaptogenesis, and NOG (hN2 cells), decreased bursting activity	0	10	
3		Moderate to low activity across endpoints	0	7	
4		Inactive/ equivocal	11	16	
5	Increased mean inter-spike interval for network spikes		0	2	

		Negatives	
Results from	Selective activity (Clusters 1,2,3,5)	False positive:0	
DNT-NAM battery	Inactive/ equivocal (Cluster 4)	True Negative: 11	

Sensitivity= 67%, Specificity= 100%, Accuracy= 73%

Summary and Future Directions

- The performance controls indicates that this battery successfully functions as a broad phenotypic screen of neurodevelopmental processes in vitro.
- Potency in the DNT-NAM battery alone does well to capture any effect on DNT-relevant processes, but does little to distinguish patterns of effect in terms of network formation and function.
- Hierarchical clustering of DNT-NAM battery selective activity classifies DNT reference chemicals with 67% sensitivity, with 16 false negatives that may be due to screening or biological limitations. The limited number of true negative reference chemicals may bias specificity, estimated at 100%.
- **Conclusion:** This preliminary evaluation of the DNT-NAM battery reveals differential patterns of DNT-relevant bioactivity that are informative for elucidating substrate-specific biological effects, contributing to a larger effort to use NAMs for identification and prioritization of putative DNT chemicals.
- **Future Direction**: A larger screened chemical dataset, the addition of assays that cover more neurobiological space, and a more balanced DNT reference chemical set will continue to improve data interpretation and model building of the DNT-NAM battery.

This poster does not reflect US EPA policy. K.E.C. was supported by appointment to the Research Participation Program of the U.S. Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. EPA

