Evaluation of in vitro New Approach Methodologies for Developmental

Neurotoxicity

Kelly E. Carstens’2, Amy Carpenter'-2, Melissa Martin?, Joshua A. Harrill?, Timothy Shafer?, Katie Paul Friedman?

TORISE Postdoctoral Research Participant 2Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency

Introduction DNT-NAM battery with performance controls
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Selective bioactivity reveals possibly relevant patterns of activity.
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