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Introduction

Acute Neurotoxicity (AcN) Assay

Summary and Conclusions

 Exposure to environmental chemicals can result in acute neurotoxicity 
(NT), negatively impacting brain activity 

 In vitro microelectrode array (MEAs) recordings of neural network 
function following chemical exposure are being used to screen chemicals 
for NT hazard (Acute Neurotoxicity (AcN))

 These recordings capture temporal (from min to days) and spatial 
aspects of action potential activity, which are described by a set of 
network parameters (NPs)

 To determine if a compound is neuroactive, global NPs are extracted from 
40 min neural recordings resulting in loss of temporal information (TI)

 In this work, our goal was to explore the properties of the TI to screen 
for acute neuroactive compounds using the response from a single 
high concentration (nominally 40 µM) and a window analysis 
technique

Method of Analysis
Objective: To use a window analysis technique, a variety of neural network parameters, and classification model fusion technique to explore how increasing the 

resolution of the temporal information of single-point recordings can help in the identification of neuroactive and negative compounds
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Acute Effects of ToxCast compounds on Network Function

Results (1/2)

 The higher classification accuracy of the SVM model that uses TI 
data demonstrates including TI is more effective for identifying 
acute neuroactive compounds when performing single-point 
screening

Results (2/2)
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Heatmap of the classification results for the training dataset
 Shows clustering results from the k-means trajectory clustering and 

classification results from the SVM classifier
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 13-15 day in vitro (DIV) networks
 Two 40 min (Baseline and Treated) recordings per plate.
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 To evaluate the value of TI, the SVM classifier was 
trained with the same 73 compounds but excluding 
its TI:
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