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wEPA Big Questions

1. At what dose does a chemical cause adverse affects?
2. What effects does the chemical cause?
3. Can we answer 1 and 2 without using animals?

NAMs (New Approach Methodologies) attempt to
answer these



wEPA New Approach Methods

* In silico (e.g. QSAR and Read-across)

e Estimate effects and doses

* |[n vitro assays
* Broad / screening (transcriptomics, cell painting)
» Targeted (receptors, enzymes)
* |n vitro PODs, modes / mechanisms of action

* In vitro Toxicokinetics
* Allow conversion of an in vitro POD to in vivo (IVIVE)

* Databases of existing traditional toxicology data
* Enables training and validation of NMA models



Overall Goals

* Predict in vivo points of departure without using animals (mg/kg/day)

e Approach 1: In vitro to in vivo (IVIVE)

* Measure in vitro points of departure (uM)
e Estimate toxicokinetics
e Back-calculate oral dose that would lead to internal concentration=in vitro POD

* Approach 2: QSAR Extrapolation of Known In Vivo PODs

* Make use of large data set of existing PODs
* Build structure-based models to predict PODs for new chemicals
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wEPA Two Screening Technologies

* High-Throughput Phenotypic Profiling(HTPP)
* Also called Cell Painting
 Visualize different cell compartments
* Examine changes in size, shape, texture

* High-throughput Transcriptomics (HTTr)
* Measure changes in gene expression due to chemical
exposure
e Canrun in whole genome or reduced coverage mode
* We use the Temp-0O-Seq Platform



wEPA IVIVE Tier 1: Cell Painting Assay (HTPP)

Cell Painting is a profiling method that measures a large variety
of phenotypic features in fluoroprobe labeled cells in vitro.

OPEN & ACCESS Fraely available online @PLOS | ONE

+ High-throughput Multiplex Cytological Profiling Assay to Measure Diverse
Cellular States

* Scalable
Sigrun M. Gustafsdottir®, Vebjorn Ljosa®, Katherine L. Sokolnicki®?, J. Anthony Wilson®, Deepika
i Amenable to Iab automation Walpita, Melissa M. Kemp, Kathleen Petri Seilerss, Hyman A. Carrel*, Todd R. Golub, Stuart L. Schreiber,

. ] Paul A. Clemons'T, Anne E. Carpenter™, Alykhan F. Shamji1
* Deployable across multiple human-derived cell types.

Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America

° Reproducible Golgi + membrane
. DNA RNA +ER + actin skeleton Mitochondria
» Cost-effective (¢ / well)

* |nfrastructure investment

* High volume data management

Laboratory & bioinformatics workflows for conduct of this
assay have been established at CCTE.

wensy | 1300 features L T




wEPA HTPP Concentration-Response Modeling Example

all-trans-Retinoic acid
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e At each concentration score each of 1300 features
* Do concentration-response analyses to get potency estimate

* Consolidate features into 49 categories for better interpretation



wEPA IVIVE Tier 1: Transcriptomics (HTTr)

* Measure changes in gene expression across the whole genome
* Run in concentration-response

 Summarize data to the level of pathways (“signatures”, gene sets)
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Single Concentration-Response Example

all-trans—Retinoic acid
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* Confidence Interval (Cl) around points from
the fitting error term

e Quter gray band is 95% CI of null dist.

* Inner lines are benchmark response

* Green vertical band is BMD and 95% Cl

ToxCast Other —

ToxCast ATG

ToxCast BSK

ToxCast Cytotox

Cell Cycle (0,3]130)
ADR/DRD/MHTR (3,0129
T Cell (1,3]171
Monocyte (0,329

E2F (0,5]18

HDAC (4,1]173
Anticancer Drug (3,0]34
STAT (3,0]28
Anthelmintic (3,0|125
Transcription Factor (0,4]235
DRD (9,0167

Estrogen (6,2|153
CACN (3,033
Proteasome Inhibitor (3,0[3
Antibiotic (4,0]246

HRH (3,0|66

ADRA (3,0]73
DRD/MTR (6,011
Antimicrobial (3,0]6
Prostaglandin (7,0]117
ERG (3,0]14

COX (4,1]150
ADR/DRD (3,0[NA;

RAR (16,0]126) *

Example HTTr Data

all-trans-Retinoic acid
MCF7 : DTXSID7021239
TP0001719112
Pharmaceutical

RAR

Summary across all pathways
for one chemical

1\

A

el
o

o

-—

-
'

— = e ———

Data from other in vitro
assays (“ToxCast”) may
provide lower PODs

-
—

St | D

-

A

%Q7Ti'

=

nlﬁE

| = i el e e L, |
H T

1e-03

1e-01

BMD (uM)

1e+01

HTTr POD



SEPA Toxicokinetics Modeling

Incorporating Dosimetry and Uncertainty into In Vitro Screening

ToxCast Chemicals
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wEPA Putting it all together

* In vitro assays yield POD in uM

e Select the minimum “relevant” in vitro POD

* TK yields in vitro to in vivo conversion factor

* “Concentration at Steady State”, C,

* Blood concentration for a 1 mg/kg/day steady-state dose
IVIVE POD (“oral equivalent dose”) = in vitro POD / C_,
* Exposure model yields estimate of exposure (mg/kg/day)

BER: Bioactivity to Exposure Ratio
* [VIVE POD / Exposure estimate
 BER >> 1 implies low concern for risk
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log(In Vivo POD mg/kg/day)

IVIVE PODs tend to provide low (protective)
POD estimates: BERs are conservative
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Only ~4% have in vitro POD
consistently greater than in vivo
values

Issue: what is the correct in vitro
POD assay?
- Bioactivity vs. adversity

Work in progress: comparison of
results taking into account both
in vivo and in vitro uncertainties



wEPA PODs from QSAR models

e Start with large database of historical in vivo PODs
* Use EPA ToxValDB

Collect in vivo data from >40 sources
Focus on public collections, supplemented with targeted literature searching

PODs from experimental studies, as well as reference doses, exposure limits and
other kinds of quantitative values

Mammalian and ecological species

~ 1,000,000 records

Available as an Excel file or through the EPA CompTox Chemicals Dashboard
* https://comptox.epa.gov/dashboard
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https://comptox.epa.gov/dashboard

wEPA Basic QSAR modeling

* Matrix of chemical descriptors + experimental endpoint

* Use many different machine learning methods to predict quantitative
values (e.g. PODs) or classes (e.g. genotoxic or not)

* Our models also incorporate uncertainty and variability in source in vivo
data

* Output should also provide confidence intervals around values (e.g. PODs)

15



wEPA Fish QSAR Model

Goal: Develop QSAR model to predict points of departure
for fish acute and repeat-dose toxicity studies

Model produces results at individual species level or at
higher taxonomic levels

e Uses data from ToxValDB and ECOTOX
* Being evaluated against other EPA fish QSAR models
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wEPA Repeat Dose Mammalian QSAR Model

* Goal: Develop QSAR model to predict points of departure for repeat dose
mammalian studies
* Developed to support prioritization processes like the TSCA project

* Compilation of the largest dataset of environmentally relevant chemicals for the
development of POD models.

* Assessment of underlying variability in the experimental data coming from a variety of
in vivo studies.

3500 { mm Training (n = 8349 | 0 = 1.04)
* Develop models to predict putative PODs along with 95% confidence intervals. s000{ o
> 2500
* Incorporation of data variability to understand model uncertainty and derivation of 5 2000
confidence intervals. g
* Enrichment analysis to evaluate the suitability of these models from a screening level 500
. . 0-
risk assessment perspective. g W Bl W

Effect Level,(logiomgikglday)
(a)

Computational Toxicology
Volume 16, Movember 2020, 100139

Predicted
Predicted

Structure-based QSAR models to predict repeat
dose toxicity points of departure

Observed Observed

Prachi Pradeep > & 2, E, Katie Paul Frisdman b, Richard Judson b (b) c)



wEPA Toxicokinetics QSAR Model

e Goal: Predict In Vitro TK parameters to reduce testing

requirements
* Evaluation of the utility and ability of chemical structure information to predict TK -
parameters in silico. I
* Development of read-across and QSAR models of TK parameters using a dataset of o] T
1487 environmental chemicals. =, 3 &
* Demonstrating the utility of predicted TK parameters to estimate uncertainty in ﬁ g et
steady-state Css and IVIVE analyses. ol =
. . . . . . ] RZ 0.47
* Derivation of bioactivity-exposure ratio to compare human OEDs and exposure o BHSE 08
predictions for chemical prioritization. G HLTICHATREge
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parameters to inform high-throughput risk- ‘ Avist"0.83
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Summary

* Two major approaches for predicting in vivo PODs
* In vitro- to-in vivo extrapolation
* In vitro POD + in vitro TK

* QSAR

e Use historical in vivo data to train machine learning models

* Both methods have uncertainty, often > 1 order of magnitude

* Traditional in vivo testing also has such uncertainties due to study protocol, Species,
strain, lab-to-lab variation

* Methods now being used mainly in priority setting contexts
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