

Systemic Toxicity Predictions Using In Vitro and In Silico Approaches

Richard Judson, PhD WC11 Virtual September 2, 2021

Phone: 919-449-7514 *Judson.richard@epa.gov*

Big Questions

1. At what dose does a chemical cause adverse affects?

2. What effects does the chemical cause?

3. Can we answer 1 and 2 without using animals?

NAMs (New Approach Methodologies) attempt to answer these

New Approach Methods

- In silico (e.g. QSAR and Read-across)
 - Estimate effects and doses
- In vitro assays
 - Broad / screening (transcriptomics, cell painting)
 - Targeted (receptors, enzymes)
 - In vitro PODs, modes / mechanisms of action
- In vitro Toxicokinetics
 - Allow conversion of an in vitro POD to in vivo (IVIVE)
- Databases of existing traditional toxicology data
 - Enables training and validation of NMA models

Overall Goals

Predict in vivo points of departure without using animals (mg/kg/day)

- Approach 1: In vitro to in vivo (IVIVE)
 - Measure in vitro points of departure (μ M)
 - Estimate toxicokinetics
 - Back-calculate oral dose that would lead to internal concentration=in vitro POD
- Approach 2: QSAR Extrapolation of Known In Vivo PODs
 - Make use of large data set of existing PODs
 - Build structure-based models to predict PODs for new chemicals

IVIVE Context

The "CompTox Blueprint"

Use in vitro methods to understand possible effects (MIE in AOP) and PODs

Two Screening Technologies

- High-Throughput Phenotypic Profiling(HTPP)
 - Also called Cell Painting
 - Visualize different cell compartments
 - Examine changes in size, shape, texture
- High-throughput Transcriptomics (HTTr)
 - Measure changes in gene expression due to chemical exposure
 - Can run in whole genome or reduced coverage mode
 - We use the Temp-O-Seq Platform

IVIVE Tier 1: Cell Painting Assay (HTPP)

Cell Painting is a profiling method that measures a large variety of phenotypic features in fluoroprobe labeled cells *in vitro*.

- High-throughput
- Scalable
- Amenable to lab automation
- Deployable across multiple human-derived cell types.
- Reproducible
- Cost-effective (¢ / well)
- Infrastructure investment
- High volume data management

Laboratory & bioinformatics workflows for conduct of this assay have been established at CCTE.

HTPP Concentration-Response Modeling Example

- At each concentration score each of 1300 features
- Do concentration-response analyses to get potency estimate
- Consolidate features into 49 categories for better interpretation

IVIVE Tier 1: Transcriptomics (HTTr)

- Measure changes in gene expression across the whole genome
- Run in concentration-response
- Summarize data to the level of pathways ("signatures", gene sets)

Tempo-Seq method is cost effect way to run 100s to 1000s of chemicals

Example HTTr Data

Single Concentration-Response Example

- Confidence Interval (CI) around points from the fitting error term
- Outer gray band is 95% CI of null dist.
- Inner lines are benchmark response
- Green vertical band is BMD and 95% CI

Toxicokinetics Modeling

Incorporating Dosimetry and Uncertainty into In Vitro Screening

Wetmore et al.

Putting it all together

- In vitro assays yield POD in μM
 - Select the minimum "relevant" in vitro POD
- TK yields in vitro to in vivo conversion factor
 - "Concentration at Steady State", C_{ss}
 - Blood concentration for a 1 mg/kg/day steady-state dose
- IVIVE POD ("oral equivalent dose") = in vitro POD / C_{ss}
- Exposure model yields estimate of exposure (mg/kg/day)
- BER: Bioactivity to Exposure Ratio
 - IVIVE POD / Exposure estimate
 - BER >> 1 implies low concern for risk

IVIVE PODs tend to provide low (protective) POD estimates: BERs are conservative

Only ~4% have *in vitro* POD consistently greater than *in vivo* values

Issue: what is the correct *in vitro* POD assay?

- Bioactivity vs. adversity

Work in progress: comparison of results taking into account both *in vivo* and *in vitro* uncertainties

PODs from QSAR models

- Start with large database of historical in vivo PODs
- Use EPA ToxValDB
 - Collect in vivo data from >40 sources
 - Focus on public collections, supplemented with targeted literature searching
 - PODs from experimental studies, as well as reference doses, exposure limits and other kinds of quantitative values
 - Mammalian and ecological species
 - ~ 1,000,000 records
 - Available as an Excel file or through the EPA CompTox Chemicals Dashboard
 - https://comptox.epa.gov/dashboard

Basic QSAR modeling

- Matrix of chemical descriptors + experimental endpoint
- Use many different machine learning methods to predict quantitative values (e.g. PODs) or classes (e.g. genotoxic or not)
- Our models also incorporate uncertainty and variability in source in vivo data
- Output should also provide confidence intervals around values (e.g. PODs)

Fish QSAR Model

pubs.acs.org/est

- Goal: Develop QSAR model to predict points of departure for fish acute and repeat-dose toxicity studies
- Model produces results at individual species level or at higher taxonomic levels
- Uses data from ToxVaIDB and ECOTOX
- Being evaluated against other EPA fish QSAR models

Ensemble QSAR Modeling to Predict Multispecies Fish Toxicity Lethal Concentrations and Points of Departure

Thomas Y. Sheffield[†] and Richard S. Judson*,‡

Repeat Dose Mammalian QSAR Model

- Goal: Develop QSAR model to predict points of departure for repeat dose mammalian studies
 - Developed to support prioritization processes like the TSCA project
 - Compilation of the largest dataset of environmentally relevant chemicals for the development of POD models.
 - Assessment of underlying variability in the experimental data coming from a variety of in vivo studies.
 - Develop models to predict putative PODs along with 95% confidence intervals.
 - Incorporation of data variability to understand model uncertainty and derivation of confidence intervals.
 - Enrichment analysis to evaluate the suitability of these models from a screening level risk assessment perspective.

Computational Toxicology

Volume 16, November 2020, 100139

Structure-based QSAR models to predict repeat dose toxicity points of departure

Toxicokinetics QSAR Model

- Goal: Predict In Vitro TK parameters to reduce testing requirements
 - Evaluation of the utility and ability of chemical structure information to predict TK parameters in silico.
 - Development of read-across and QSAR models of TK parameters using a dataset of 1487 environmental chemicals.
 - Demonstrating the utility of predicted TK parameters to estimate uncertainty in steady-state Css and IVIVE analyses.
 - Derivation of bioactivity-exposure ratio to compare human OEDs and exposure predictions for chemical prioritization.

Computational Toxicology
Volume 16, November 2020, 100136

Using chemical structure information to develop predictive models for *in vitro* toxicokinetic parameters to inform high-throughput riskassessment

Summary

- Two major approaches for predicting in vivo PODs
 - In vitro- to-in vivo extrapolation
 - In vitro POD + in vitro TK
- QSAR
 - Use historical in vivo data to train machine learning models
- Both methods have uncertainty, often > 1 order of magnitude
 - Traditional in vivo testing also has such uncertainties due to study protocol, Species, strain, lab-to-lab variation
- Methods now being used mainly in priority setting contexts

Acknowledgements

- Josh Harrill
- Logan Everett
- Imran Shah
- Rusty Thomas
- Richard Judson
- Woody Setzer
- Katie Paul Friedman
- Antony Williams
- Grace Patlewicz
- Prachi Pradeep
- Todd Martin
- John Wambaugh
- Barbara Wetmore
- Risa Sayre

- Coleen Elonen
- Jason Brown
- Beena Vallanat
- Thomas Sheffield
- Derik Haggard
- Joseph Bundy
- Bryant Chambers
- Aswani Unnikrishnan
- Clinton Willis
- Richard Brockway
- Johanna Nyffeler
- Megan Culbreth
- Dan Hallinger
- Terri Fairley