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EPA There Are Many Considerations for IVIVE

Environmental Protection
Agency

in vitro In vivo
(nominal testing concentration) (mg/kg bodyweight/day)
/\ Red
Media/Air Blood | Plasma | Tissue
N Exchange Cells
g“ [Coiood] <= [Cp'isma]
N
- ? [Cblood]/Rb:p
Chemical [Cnominal] Media ': ? 5 [Cfree,plasma] [Ctissue]
() @ _,g ?Lipid S ! A o -
<:> - and 8. ? > fUp[CP|35ma] Kp[Cfree plasma]
. IC. . 1=f [C._ . Protein o '
— Plastic [Cireeinvitrol *fupl Crominail Binding [Conc.] In Vitro
Binding  cell Binding
— — Renal Clearance Restrictive Metabolic Clearance
— — — fup*QGFR*[Ckidney,plasma] Qiver * fup * [Cliver,plasma]
D —S—

[S—
[C ]—K [C ] Qliver + fup * [Cliver,plasma]
cellulard™ "¢ inal . .
— e OR Non-Restrictive Metabolic Clearance

Qliver * [Cliver,p lasma]

Qliver + [Cliver,plasma]

How do you select the appropriate in vitro and in vivo concentrations for extrapolation?
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Impact of IVIVE Assumptions
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Comparing Traditional and IVIVE Points of Departure
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““  HTTK: A NAM for Exposure

" We collect in vitro, high throughput toxicokinetic (HTTK) data to provide toxicokinetics
for large numbers of chemicals (for example, Rotroff et al., 2010, Wetmore et al., 2012, 2015)

" HTTK methods have been used by the pharmaceutical industry to determine range of
efficacious doses and to prospectively evaluate success of planned clinical trials
(Jamei, et al., 2009; Wang, 2010)

" The primary goal of HTTK is to provide a human dose context for bioactive in vitro
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE)
(for example, Wetmore et al., 2015)

" A secondary goal is to provide open-source data and models for evaluation and use by
the broader scientific community (Pearce et al, 2017a)

Wambaugh, et al. "New Approach Methodologies for Exposure Science.”
Current Opinion in Toxicology 15 (2019): 76-92.
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High Throughput Toxicokinetics (HT TK)

In vitro toxicokinetic data
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In vitro toxicokinetic data + generic toxicokinetic model
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In vitro toxicokinetic data + generic toxicokinetic model
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High Throughput Toxicokinetics (HT TK)

In vitro toxicokinetic data + generic toxicokinetic model
= high(er) throughput toxicokinetics
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A Generic Model is a Hypothesis

" For pharmaceuticals, /n vitro data combined with a generic TK model including
hepatic metabolism and passive glomerular filtration (kidney) are often enough to
make predictions within a factor of 3 of /n vivodata (Wang, 2010)

" For other chemicals there may be complications
" We can add additional processes only if there is some way to parameterize the

process for most chemicals — otherwise we are back to tailoring the model to a
chemical
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from Breen et al. (2021)

. ADMET Predictor IndusChem

References

Jamei (2009)
License, but

Availability inexpensive for
research
Open Source No
Default PBTK Structure Yes
Population Variability Yes
Data Needs High/Low

Typical Use Case Drug Discovery

Batch Mode Yes
Graphical User Interface Yes

Built-in Chemical- ifi -
uilt-in'Chemical-Specific Many Clinical Drugs

Library
Oral Bioavailability
Modeling 1
In Vitro Distribution SIVAVIVD
Exposure Route Oral, IV

No
No

Parrott (2009)

License, but
inexpensive for
research

No

Yes

Yes
High/Low

Drug Discovery

Yes
Yes

No

Yes

No

Oral, IV

Yes
No
No
Yes

Eissing (2011)
Free

GitHub
Yes
Yes

High

Drug Discovery

Yes
Yes

Many pharmaceutical-
specific models available

No

No

Oral, IV

Yes
Matlab and R
Yes (2017)
Yes

Jongeneelen (2011)

Free

No
Yes
No
High
Environmental
Assessment
No

Excel

15 Environmental
Compounds

No

No

Oral,
Gas Inhalation,
Dermal

No
No
No
No

Punt (2020)
Free

GitHub
Yes
No
Low
Food and Drug
Safety Evaluation
No

No

No

No

No

Oral

No
No
Yes
No

Armitage (2021)
Free

Planned Release
Yes
No

Low
Environmental
Assessment

No
Excel

No

No

No

Oral, IV, Inhalation

Yes
No
Yes
No

Pearce (2017)

Free

CRAN and GitHub
Yes
Yes
Low

Screening

Yes

No
Pharmaceuticals and
ToxCast: 998 human, 226
rat
No (Will be available in
the future version)

Armitage Model

Oral, IV, Gas Inhalation
(Dermal, Aerosol, and Fetal
forthcoming)

Yes

SBML and Jarnac
Yes
Yes

*Both PLETHEM (Pendse et al., 2020) and Web-ICE (Bell et al., 2020) provide GUI’s to HTTK and other models

Pre-computed HTTK results are also available at https://comptox.epa.gov/dashboard
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https://[CRAN.R-project.org/package=httk
= O =
R CRAN - Package httk x 4+ Q
& C & cranr-project.org/web/packages/httk/index.html R k 'l h k ))
i1 Apps  (8) CompTox Chemical.. @ Article Request @ Absence Reguest & Travel Forms -4 EHP pac age tt

httk: High-Throughput Toxicokinetics

Generic models and chemical-specific data for simulation and statistical analvsis of chemical toxicoki
<do: 10 18637158 w079 104> Chemical-specific in vitro data have been obtained from relatively high

("PBTK") and empirical (for example, one compartment) "TK" models can be parameterized with the
exposure routes, and various species. The models consist of systems of ordinary differential equations|
speed. A Monte Carlo sampler 18 included, which allows for simulating human biological variability (]
propagating parameter uncertainty. Calibrated methods are included for predicting tissue:plasma partif
2017 <do1:10.1007/s10928-017-9548-7=). These functions and data provide a set of tools for in vitro-

screening data (for example, Tox21, ToxCast) to real-world exposures via reverse dosimetry (also kno
<do1:10.1093 toxscikfvl T1=).

Version:
Depends:
Imports:
Suggests:

Published:
Author:

Mamntainer:

BugReports:
q License:

Cloovricht:

204

downloads 1071/month
R (=2.10)

deSolve, mam, data table, survey, myvtnorm, truncnorm,_ stats, graphics, utils, mag
goplot?, knatr, rmarkdown, Eorsp, GGally, gplots, scales, EnvStats, MASS, EColg

reshape?. gdata, viridis, CensEeghlod, gmodels, colorspace, cowplot, ggrepel. dp
2021-05-10
John Wambaugh [aut, cre], Robert Pearce

[aut], Sarah Davidson [aut]. Mivuki Breen
[cth], Nisha Sipes [ctb], Barbara Wetmore

John Wambaugh <wambaugh john at epa gov>
https:github.com TUSEPA 'CompTox-ExpoCast-hitk

[aut], Caroline Ring [aut]
[cth]. Shannon Bell [cth], Xia
[cth], Woodrow Setzer

GPL-3

Open source, transparent, and peer-
reviewed tools and data for high
throughput toxicokinetics (httk)
Available publicly for free statistical
software R

Allows in vitro-in vivo extrapolation
(IVIVE) and physiologically-based
toxicokinetics (PBTK)
Human-specific data for 998
chemicals

Described in Pearce et al. (2017a)
and Breen et al. (2020)

Thie nackaces 12 nrimarily develoned by emnlovees ofthe U S Federal covernment a=s part of thetr official duties and 1= therefore oublic |



https://cran.r-project.org/package=httk

Modules within R Package “httk”

Feature Description Reference
Chemical Specific In Vitro Metabolism and protein binding for ~1000 Wetmore et al. (2012,
. . ) 2013, 2015), plus
Measurements chemicals in human and ~200 in rat
others
CherTnc_aI-Spemflc In Silico Metabollsm_and protein binding for ~8000 Sipes et al. (2017)
Predictions Tox21 chemicals

One compartment, three compartment,
Generic toxicokinetic models physiologically-based oral, intravenous, and
inhalation (PBTK)

Pearce et al. (2017a),
Linakis et al. (2020)

Tissue partition coefficient

: Modified Schmitt (2008) method Pearce et al. (2017b)
predictors
Variability Simulator Based on NHANES biometrics Ring et al. (2017)
In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)
Uncertainty Propagation Model parameters can be described by Wambaugh et al.
y Fropag distributions reflecting uncertainty (2019)

Table from Breen et al. (2021)
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" To evaluate a chemical-specific TK model for “chemical x” you
can compare the predictions to in vivo measured data

Can estimate bias

Can estimate uncertainty

Can consider using model to extrapolate to other situations
(dose, route, physiology) where you have no data

Building Confidence in TK Models

Observed Concentrations

Chemical
Specific
- X Model

»
>

Predicted Concentrations

Cohen Hubal et al. (2019)
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" To evaluate a chemical-specific TK model for “chemical x” you
can compare the predictions to in vivo measured data

" However, we do not typically have TK data

" We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data
We do expect larger uncertainty, but also greater confidence

Can estimate bias
Can estimate uncertainty

Can consider using model to extrapolate to other situations
(dose, route, physiology) where you have no data

in model implementation

Estimate bias and uncertainty, and try to correlate with

chemical-specific properties

Observed Concentrations

Observed Concentrations

Building Confidence in TK Models

Chemical
Specific
Model

Predicted Concentrations

X

Generic
Model

Predicted Concentrations

Cohen Hubal et al. (2019)
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= Building Confidence in TK Models

(dose, route, physiology) where you have no data

(7]
c
" To evaluate a chemical-specific TK model for “chemical x” you % .
can compare the predictions to in vivo measured data = X
. . (]

® Can estimate bias = X .
o X

| 1 : O , ]

Can estimate uncertainty S X, Chemical

® Can consider using model to extrapolate to other situations = Specific
A X Model
0
O

" However, we do not typically have TK data Predicted Concentrations

" We can parameterize a generic TK model, and evaluate that

model for as many chemicals as we do have data

" We do expect larger uncertainty, but also greater confidence
in model implementation

" Estimate bias and uncertainty, and try to correlate with
chemical-specific properties

® Can consider using model to extrapolate to other situations
(chemicals without in vivo data) Predicted Concentrations

Cohen Hubal et al. (2019)

Generic
y Model

Observed Concentrations
<<
x
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can compare the predictions to in vivo measured data
" (Can estimate bias
® (Can estimate uncertainty
® Can consider using model to extrapolate to other situations
(dose, route, physiology) where you have no data

" However, we do not typically have TK data

" We can parameterize a generic TK model, and evaluate that
model for as many chemicals as we do have data

" We do expect larger uncertainty, but also greater confidence

in model implementation

" Estimate bias and uncertainty, and try to correlate with
chemical-specific properties

® Can consider using model to extrapolate to other situations
(chemicals without in vivo data)

Observed Concentrations

Observed Concentrations

Chemical
Specific
Model

Predicted Concentrations

X

All of the
y VX y values for z
« oz are over-
x predicted!
y 7 x
X y
“y Y
Sy 2 Generic
y Model

Predicted Concentrations

Cohen Hubal et al. (2019)
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" EPA has developed a public database of concentration
vs. time data for building, calibrating, and evaluating

TK models

" Curation and development is ongoing, but to date

includes:
" 198 analytes (EPA, National Toxicology Program,

open literature)
® Routes: Intravenous, dermal, oral, sub-cutaneous,
and inhalation exposure

" Standardized, open-source curve fitting software
invivoPKfit used to calibrate models to all data:

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

# Studies
# Test Substances

Y

442 147

Other: 12 7

Sayre et al. (2020)

CvTdb: An InVivo TK Database

https://github.com/USEPA/CompTox-PK-CvTdb

11

adipose

—

expired air

feces 4 1
urine 59 14


https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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USAF and EPA developed a generic gas inhalation
physiologically-based toxicokinetic (PBTK) model

Evaluated HTTK with CvTdb: 142 exposure
scenarios across 41 volatile organic chemicals
were modeled and compared to published in
vivo data for humans and rat

R? was 0.69 for predicting peak concentration

R? was 0.79 for predicting time integrated plasma
concentration (Area Under the Curve, AUC)

Log(Observed AUC)

LR

i

=

Developing Models with the CvT Database

Pyrene Rat BL *

Species
Pyrene.Rat BL — Overall
’ Human
Tetrahydrofuran Human EB . Rat
L] /4 t
‘& .
* e 4 v « Decane Rat BL

~—2H-Perfluoropropane Human VBL

~2H-Perflucropropane Human VBL
*Furan Rat BL
* 2H-Perfluoropropane Human VBL
*2H-Perfluoropropane Human VBL

Regression slope- 0.97
Regression R*2- (.79
Regression RMSE: 1.49
RMSE (v=_ ldentity): 0.55

* Furan Rat BL

0 2 4
Log(Simulated AUC)

Linakis et al. (2020)
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within a factor of 2 of the experimental data”
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" World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average,
within a factor of 2 of the experimental data”

" Predictions of full concentration vs. time curve (that is, all time points for all chemicals):

" Linakis et al. (2020): For forty volatile, non-pharmaceutical chemicals root mean squared error
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Review of HT TK Evaluations

" World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average,
within a factor of 2 of the experimental data”

" Predictions of full concentration vs. time curve (that is, all time points for all chemicals):

" Linakis et al. (2020): For forty volatile, non-pharmaceutical chemicals root mean squared error

(RMSE) of 1.11 (on a log10 scale, therefore a factor of 13x) and a coefficient of determination (R?)
of 0.47

" Prediction of TK summary statistics such as peak concentration and time-integrated (“area under the
curve” or AUC) concentration:

" Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from observed by
2.3x

" Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 3.2x for AUC

" Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-pharmaceutical nature,
RMSE of 2.2x for peak and 1.64x for AUC

" Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is included in
httk similarly predicted human volume of distribution with a RMSE of 0.48 (3x)
Breen et al. (2021)
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® U.S. EPA maintains a list of chemicals that already have in vitro TK measurements
(Cliw fupr CACO-2, etc.) tested and those that are being considered for testing

®  We are happy to share this list with others upon request (wambaugh.john@epa.gov)

® We would appreciate any lists of chemicals you plan to test or are testing to minimize duplication
unless intended for cross-laboratory evaluations

" You do not need to share your data, but we’d always love to have your data

" EPA distributes HTTK data via R package httk
(https://cran.r-project.org/package=httk) and
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). Also see
U.S. NICEATM Web-ICE (https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html)



https://cran.r-project.org/package=httk
https://comptox.epa.gov/dashboard
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html

SEPA Documenting, Standardizing, and Assessing
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Agency

" Multiple governments and organizations
continuing to collect in vitro data for HTTK

" Various approaches, including R package “httk”,

try to summarize these data
" EPAis interested in standardizing data analysis
" Working on new R package “invitroTKstats”

" Ensure all necessary measurements and
metadata are recorded

" Structure data to support potential future
databases

In Vitro Measurements

Pharm Res (2019) 36: 113 Check for
https://doi.org/10.1007/s11095-019-2645-0 updates
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Interlaboratory Variability in Human Hepatocyte Intrinsic
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Christine M. Bowman ' « Leslie Z. Benet'

Received: 7 March 2019 / Accepted: 10 May 2019 / Published online: 31 May 2019
( .\'plmqu\ +Business Media, LI1C, 1 of Spr \.mnr '_’lll"

1
|

60
8 1 .
c
g 40
E -
[a]
< 20
3 [ ]
L [ ]
g104 . o
5 i j ¢ -
0 | | : | | ] || |
0 3 4 5 6 7 8 9
Number of Measurements (n)
n 3 4 5 6 7 8 9
# values 17 6 3 2 3 1 1
Mean
Largest DIif. 28 37 19 63 63 17 14
SD 18 13 28 28 21




SEPA
wee s QSPRs for HTTK Parameters  CRIRET

An Intuitive Approach for Predicting Potential Human Health Risk
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- Adding Models to HTTK

The R package “httk” provides a library of peer-reviewed, published chemical-specific data and a suite of
tools for parameterizing and evaluating TK models

The open-source language "MCsim" (Bois, ) is used to describe models for compartmental and PBTK.
"MCsim" converts the model descriptions into high-speed C computer code

With the addition of a model documentation file in the R language, the C model code is then integrated
into the “httk” environment using the open-source R package development functionality

We have described in detail how to add models to the “httk” suite and how to take advantage of the pre-
existing data and functionality of the “httk” environment.

Draft manuscript:
Developing Generic Toxicokinetic Models with R Package “httk” for Enhanced Reporting
Accuracy and Statistical Evaluation

Expected EPA clearance (public availability) and submission to journal in January 2022
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EPA Evaluating Generic Human Maternofetal Model
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Agency

In Vivo data collected by Dallmann et al.

Mon-Pregnant Pregnant

—_
[
1

Drug

Acetaminophen
Caffeine
Granizetron 10°
Lorazepam

Metoprolol

Midazolam
Nifedipine

Ondansetron

Route
B
& COral

Observed Maternal Plasma AUC
Observed Maternal Plasma AUC

107" 1 10 10° 10° 10 1 10 10°
httk Predicted (ulM*h) httk Predicted {ul*h)

Work led by Dustin Kapraun with Mark Sfeir, Robert Pearce, Annie
Lumen, Lesa Aylward, André Dallmann, and Richard Judson
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Conclusions
" |VIVE for points of departure :
. . . EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY @
r‘eqU|reS models of b|o|0g|ca| https://doi.org/10.1080/17425255.2021.1935867
pathway, in vitro disposition, REVIEW
and toxicokinetics High-throughput PBTK models for in vitro to in vivo extrapolation
® Conservatism depends upon Miyuki Breen?, Caroline L Ring®, Anna Kreutz®, Michael-Rock Goldsmith® and John F Wambaugh?

assumptions used

" Generic PBTK models evaluated across multi-chemical databases provide a degree of
statistical evaluation that is often otherwise unobtainable for non-therapeutic chemicals
" CvTdb (Sayre et al., 2020) provides key tool for statistical evaluation of TK models
" EPA provides peer reviewed data (>1000 chemicals for human, >200 for rat) and models
via the R package “httk”

" New guidance (papers, R packages) in development for adding new TK data and models to “httk” in
an open, transparent format

Office of Research and Development The views expressed in this presentation are those of the author
Center for Computational Toxicology and Exposure and do not necessarily reflect the views or policies of the U.S. EPA
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