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Figure from Breen et al. (2021)
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There Are Many Considerations for IVIVE
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Impact of IVIVE Assumptions
Different combinations of assumptions, 
for example:

res-tot-vein-mean = restrictive 
metabolism, total chemical, venous 
concentrations, mean concentration 
during tox study

Co
un

t o
f T

im
es

 S
el

ec
te

d 
as

 B
es

t M
od

el
Forw

ard Dosim
etry

Honda et al. (2019)



6 of 39

Impact of IVIVE Assumptions
Different combinations of assumptions, for example:

Co
un

t o
f T

im
es

 S
el

ec
te

d 
as

 B
es

t M
od

el

“res-tot-vein-mean” = 
restrictive 
metabolism, total 
chemical, venous 
concentrations, mean 
concentration during 
tox study

“nres-tot-tis-max” = 
non-restrictive 
metabolism, total 
chemical, tissue 
concentrations, max 
conc. during tox study

Honda et al. (2019)



7 of 39

Impact of IVIVE Assumptions
Different combinations of assumptions, for example:
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Comparing Traditional and IVIVE Points of Departure
Honda et al. (2019) Paul-Friedman et al. (2019)

New Approach Methodology (NAM)-derived point of 
departure (POD) from ten to one hundred times more 

conservative than traditional methods
Conservatism of NAM-POD depends on choices made 

for generic PBTK and in vitro disposition
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Figure from Breen et al. (2021)
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HTTK:  A NAM for Exposure

We collect in vitro, high throughput toxicokinetic (HTTK) data to provide toxicokinetics 
for large numbers of chemicals (for example, Rotroff et al., 2010, Wetmore et al., 2012, 2015) 

HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials 
(Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) 
(for example, Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017a)

Wambaugh, et al. "New Approach Methodologies for Exposure Science.“
Current Opinion in Toxicology 15 (2019): 76-92.
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A Generic Model is a Hypothesis

 For pharmaceuticals, in vitro data combined with a generic TK model including 
hepatic metabolism and passive glomerular filtration (kidney) are often enough to 
make predictions within a factor of 3 of in vivo data (Wang, 2010)

 For other chemicals there may be complications

 We can add additional processes only if there is some way to parameterize the 
process for most chemicals – otherwise we are back to tailoring the model to a 
chemical
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Why Build Another Generic PBTK Tool?

*Both PLETHEM (Pendse et al., 2020) and Web-ICE (Bell et al., 2020) provide GUI’s to HTTK and other models
Pre-computed HTTK results are also available at https://comptox.epa.gov/dashboard

from Breen et al. (2021)

SimCYP ADMET Predictor 
/ GastroPlus PK-Sim IndusChem

Fate pbktool G-PBTK httk

References Jamei (2009) Parrott (2009) Eissing (2011) Jongeneelen (2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability
License, but 

inexpensive for 
research

License, but 
inexpensive for 

research
Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release CRAN and GitHub
Default PBTK Structure Yes Yes Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No No No Yes

Data Needs High/Low High/Low High High Low Low Low

Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 
Assessment

Food and Drug 
Safety Evaluation

Environmental 
Assessment Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User Interface Yes Yes Yes Excel No Excel No

Built-in Chemical-Specific 
Library Many Clinical Drugs No Many pharmaceutical-

specific models available
15 Environmental 

Compounds No No
Pharmaceuticals and 

ToxCast: 998 human, 226 
rat

Oral Bioavailability 
Modeling Yes Yes No No No No No (Will be available in 

the future version)
In Vitro Distribution SIVA VIVD No No No No No Armitage Model

Exposure Route Oral, IV Oral, IV Oral, IV
Oral, 

Gas Inhalation, 
Dermal

Oral Oral, IV, Inhalation
Oral, IV, Gas Inhalation 

(Dermal, Aerosol, and Fetal 
forthcoming)

Ionizable Compounds Yes Yes Yes No No Yes Yes
Export Function No No Matlab and R No No No SBML and Jarnac

R Integration No No Yes (2017) No Yes Yes Yes
Reverse Dosimetry Yes Yes Yes No No No Yes

https://comptox.epa.gov/dashboard
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 998 
chemicals

• Described in Pearce et al. (2017a) 
and Breen et al. (2020)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Modules within R Package “httk”
Feature Description Reference

Chemical Specific In Vitro 
Measurements

Metabolism and protein binding for ~1000 
chemicals in human and ~200 in rat 

Wetmore et al. (2012, 
2013, 2015), plus 
others

Chemical-Specific In Silico 
Predictions

Metabolism and protein binding for ~8000 
Tox21 chemicals Sipes et al. (2017)

Generic toxicokinetic models
One compartment, three compartment, 
physiologically-based oral, intravenous, and 
inhalation (PBTK)

Pearce et al. (2017a), 
Linakis et al. (2020)

Tissue partition coefficient 
predictors Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017)
In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)

Uncertainty Propagation Model parameters can be described by 
distributions reflecting uncertainty

Wambaugh et al. 
(2019)

Table from Breen et al. (2021)
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Cohen Hubal et al. (2019)
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Cohen Hubal et al. (2019)



26 of 39

Building Confidence in TK Models
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 
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 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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CvTdb:  An In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating 
TK models

 Curation and development is ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

open literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data:

28

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Sayre et al. (2020)

# Studies
# Test Substances

https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Developing Models with the CvT Database

 USAF and EPA developed a generic gas inhalation 
physiologically-based toxicokinetic (PBTK) model 
 Evaluated HTTK with CvTdb: 142 exposure 

scenarios across 41 volatile organic chemicals 
were modeled and compared to published in 
vivo data for humans and rat

 R2 was 0.69 for predicting peak concentration
 R2 was 0.79 for predicting time integrated plasma 

concentration (Area Under the Curve, AUC)

Linakis et al. (2020)
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 World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average, 
within a factor of 2 of the experimental data” 

Review of HTTK Evaluations

Breen et al. (2021) 



31 of 39

 World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average, 
within a factor of 2 of the experimental data” 

 Predictions of full concentration vs. time curve (that is, all time points for all chemicals):
 Linakis et al. (2020): For forty volatile, non-pharmaceutical chemicals root mean squared error 

(RMSE) of 1.11 (on a log10 scale, therefore a factor of 13x) and a coefficient of determination (R2) 
of 0.47

Review of HTTK Evaluations

Breen et al. (2021) 
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 World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average, 
within a factor of 2 of the experimental data” 

 Predictions of full concentration vs. time curve (that is, all time points for all chemicals):
 Linakis et al. (2020): For forty volatile, non-pharmaceutical chemicals root mean squared error 

(RMSE) of 1.11 (on a log10 scale, therefore a factor of 13x) and a coefficient of determination (R2) 
of 0.47

 Prediction of TK summary statistics such as peak concentration and time-integrated (“area under the 
curve” or AUC) concentration:
 Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from observed by 

2.3x
 Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 3.2x for AUC
 Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-pharmaceutical nature, 

RMSE of 2.2x for peak and 1.64x for AUC
 Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is included in 

httk similarly predicted human volume of distribution with a RMSE of 0.48 (3x)

Review of HTTK Evaluations

Breen et al. (2021) 
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 U.S. EPA maintains a list of chemicals that already have in vitro TK measurements 
(Clint, fup, CACO-2, etc.) tested and those that are being considered for testing

 We are happy to share this list with others upon request (wambaugh.john@epa.gov)

 We would appreciate any lists of chemicals you plan to test or are testing to minimize duplication 
unless intended for cross-laboratory evaluations

 You do not need to share your data, but we’d always love to have your data 

 EPA distributes HTTK data via R package httk 
(https://cran.r-project.org/package=httk) and 
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard). Also see 
U.S. NICEATM Web-ICE (https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html)

Coordinating Ongoing Data Collection

https://cran.r-project.org/package=httk
https://comptox.epa.gov/dashboard
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive.html
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Documenting, Standardizing, and Assessing
In Vitro Measurements

Number of Measurements (n)

 Multiple governments and organizations 
continuing to collect in vitro data for HTTK

 Various approaches, including R package “httk”, 
try to summarize these data

 EPA is interested in standardizing data analysis

 Working on new R package “invitroTKstats”

 Ensure all necessary measurements and 
metadata are recorded

 Structure data to support potential future 
databases
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QSPRs for HTTK Parameters
 We may not always need to measure
 There is a separate collaborative evaluation of QSPRs for predicting 

HTTK
 Presented at QSAR2021 virtual meeting
 Manuscript in preparation
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Adding Models to HTTK

Draft manuscript:
Developing Generic Toxicokinetic Models with R Package “httk” for Enhanced Reporting 
Accuracy and Statistical Evaluation

Expected EPA clearance (public availability) and submission to journal in January 2022

 The R package “httk” provides a library of peer-reviewed, published chemical-specific data and a suite of 
tools for parameterizing and evaluating TK models

 The open-source language "MCsim" (Bois, ) is used to describe models for compartmental and PBTK. 
"MCsim" converts the model descriptions into high-speed C computer code

 With the addition of a model documentation file in the R language, the C model code is then integrated 
into the “httk” environment using the open-source R package development functionality

 We have described in detail how to add models to the “httk” suite and how to take advantage of the pre-
existing data and functionality of the “httk” environment. 
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Evaluating Generic Human Maternofetal Model 

Work led by Dustin Kapraun with Mark Sfeir, Robert Pearce, Annie 
Lumen, Lesa Aylward, André Dallmann, and Richard Judson
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In Vivo data collected by Dallmann et al.
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Conclusions
 IVIVE for points of departure 

requires models of biological 
pathway, in vitro disposition, 
and toxicokinetics 
 Conservatism depends upon 

assumptions used

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

Generic PBTK models evaluated across multi-chemical databases provide a degree of 
statistical evaluation that is often otherwise unobtainable for non-therapeutic chemicals
 CvTdb (Sayre et al., 2020) provides key tool for statistical evaluation of TK models

 EPA provides peer reviewed data (>1000 chemicals for human, >200 for rat) and models 
via the R package “httk”
 New guidance (papers, R packages) in development for adding new TK data and models to “httk” in 

an open, transparent format

Office of Research and Development
Center for Computational Toxicology and Exposure
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