

Modeling via the WebTEST2.0 Platform

Todd Martin¹*, Gabriel Sinclair², Christian Ramsland², Nathaniel Charest², and Antony Williams¹

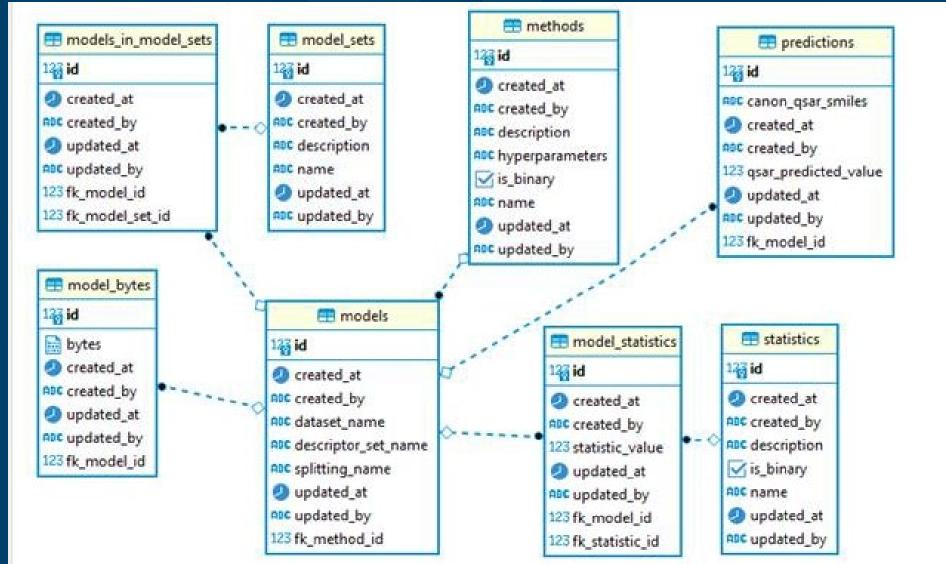
¹ US EPA/ORD/CCTE
² ORAU

QSAR Methods

- >Python based QSAR methods
 - RF Random Forest
 - SVM Support Vector Machine
 - DNN Deep Neural Network
 - XGBoost eXtreme Gradient Boosting
 - Consensus average of above methods
- ➤ Easily implementable as web services for both model building and model prediction

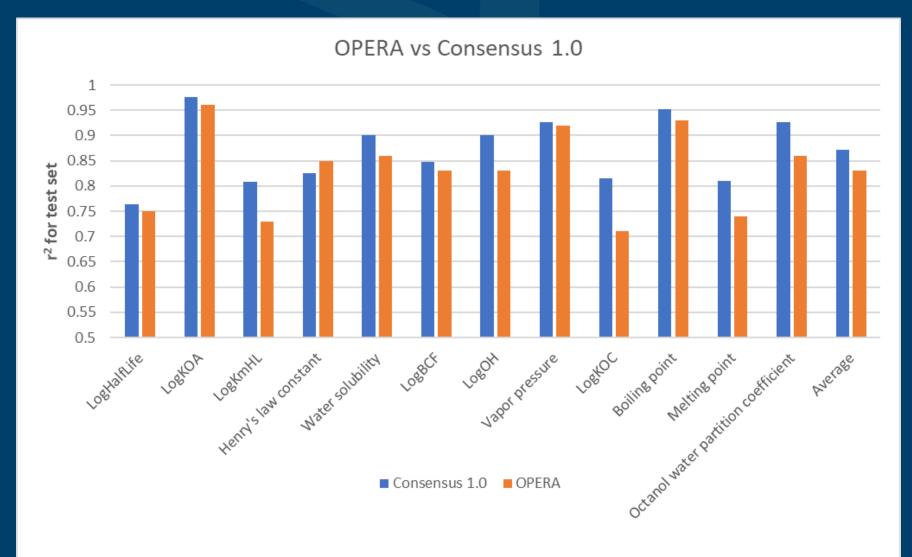
Splitting into training and test sets

- > Representative random forest splitting
 - Data set is split into 5-fold training and test sets
 - Random splitting is chosen using the splitting that gives the performance most similar to the average performance using random forest method
 - This approach was chosen so that we had a single training and test set for each dataset to reduce complexity for users
 - Other splittings can be added to allow comparison of performance with other researchers



Molecular descriptors

- ➤ Descriptors for model building:
 - ■T.E.S.T. 5.1
 - Padel
 - RDKit
 - Mordred
 - Others?
- ➤ Descriptors available via web API
- > Descriptors are filtered prior to model building
 - Remove correlated, constant descriptors



QSAR models schema

Comparison to OPERA

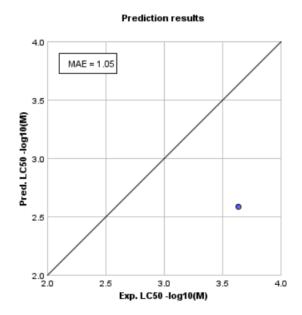
Prediction reports

Predicted LC50 for 16672-87-0 from Consensus method

Prediction results

Endpoint	Experimental value (CAS= 16672-87-0)	Predicted value ^a
LC ₅₀ -log10(M)	3.05	3.13
LC ₅₀ mg/L	129.97	106.46

^aNote: the test chemical was present in the training set. The prediction *does not* represent an external prediction.


Individual Predictions			
Method	Method Description	Predicted value -log10(M)	
svm_regressor_1.1	sklearn implementation of SVM using NuSVR for regression	3.23	
dnn_regressor_1.8	tensorflow/keras implementation of DNN	3.11	
rf_regressor_1.1	sklearn implementation of random forest	3.14	
xgb_regressor_1.0	python implementation of extreme gradient boosting	3.05	

Applicability domain

Test chemical	Training Neighbor 1	Training Neighbor 2	Training Neighbor 3	Result
ОН О—Р—ОН СІ	H ₃ C OH OH CH ₃	OH H OH OH	H ₃ C O O O O O O O O O O O O O O O O O O O	SC for 95% training coverage=0.52 Average SC=0.76 Result: Inside AD
exp=3.05	SC=0.79 exp=3.85	SC=0.78 exp=4.57	SC=0.71 exp=3.52	

Predictions for the test chemical and for the most similar chemicals in the external test set

If the predicted value matches the experimental values for similar chemicals in the test set (and the similar chemicals were predicted well), one has greater confidence in the predicted value.

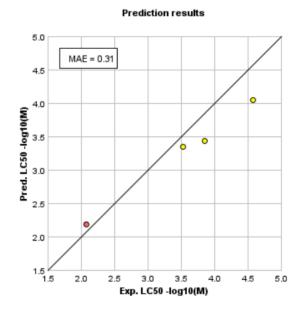
Results for entire set vs results for similar chemicals

Chemicals	MAE*
Entire set	0.49
Similarity coefficient ≥ 0.5	1.05

^{*}Mean absolute error in -log10(M)

Color legend

Color	Range*
Green	SC ≥ 0.9
Blue	$0.8 \le SC < 0.9$
Yellow	$0.7 \le SC < 0.8$
Orange	$0.6 \le SC < 0.7$
Red	0.6 < SC


^{*}SC = similarity coefficient

Results for similar chemicals

CAS	Structure	Similarity Coefficient	Experimental value -log10(M)	Predicted value -log10(M)
16672-87-0 (test chemical)	OH O—P—OH		3.05	3.13
2074-67-1	но	0.84	3.64	2.58

Predictions for the test chemical and for the most similar chemicals in the training set

If the predicted value matches the experimental values for similar chemicals in the training set (and the similar chemicals were predicted well), one has greater confidence in the predicted value.

Results for entire set vs results for similar chemicals

Chemicals	MAE*
Entire set	0.22
Similarity coefficient ≥ 0.5	0.31

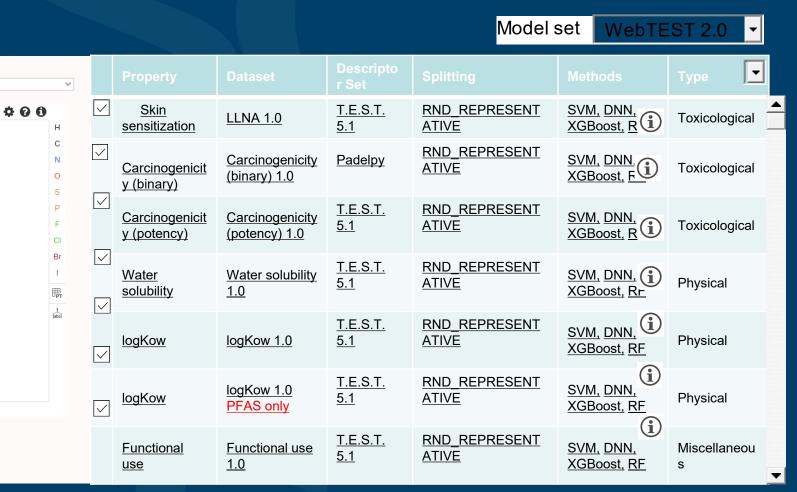
^{*}Mean absolute error in -log10(M)

Color legend

Color regend			
Color	Range*		
Green	SC ≥ 0.9		
Blue	$0.8 \le SC < 0.9$		
Yellow	$0.7 \le SC < 0.8$		
Orange	$0.6 \le SC \le 0.7$		
Red	0.6 < SC		

^{*}SC = similarity coefficient

Results for similar chemicals					
CAS	Structure	Similarity Coefficient	Experimental value -log10(M)	Predicted value -log10(M)	
16672-87-0 (test chemical)	OH O—P—OH		3.05	3.13	
<u>813-78-5</u>	H ₂ C OH OH CH ₃	0.79	3.85	3.44	
1071-83-6	OH HOOH	0.78	4.57	4.05	
1112-38-5	HS—P=O CH ₃	0.71	3.52	3.35	
627-30-5	СІ ОН	0.51	2.07	2.19	


Search for chemical by systematic name, synonym, CAS number, DTXSID or InChlKey

Predictions

0

 \circ

Single chemical real time predictions

Future work

- ➤ Add third party predictions via web services and adding model metadata to the database
 - ■EPISUITE, OPERA, VEGA, WebTEST1.0

Questions???

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency