Comparing and Interpreting Tox21 Data Analysis Approaches

Agnes Karmaus, PhD Integrated Laboratory Systems, LLC Morrisville, NC, USA

Email: akarmaus@ils-inc.com

Conflict of Interest Statement

The author declares no conflict of interest.

The views expressed are those of the authors and do not necessarily reflect the views or policies of the US EPA

The Tox21 Federal Partnership

https://tox21.gov Inception in 2008

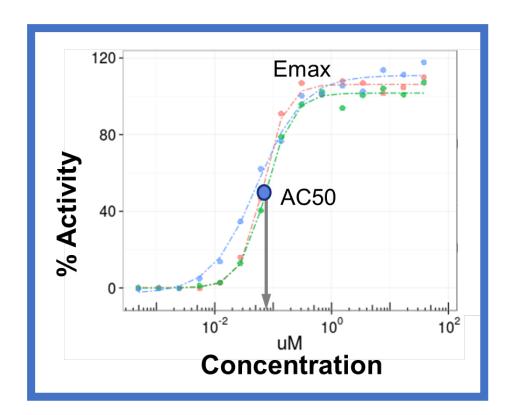
United States Environmental Protection Agency

National Center for Advancing Translational Sciences

Translation

Develop methods & models toward prioritization and risk assessment

- Hazard potential
- Mechanism identification
- Compound-disease association
- Predictive models of *in vivo* outcomes


High-Throughput Data Generation

Quantitative high-throughput screening (qHTS)

>8,000 chemicals in >70 assays

>100 million concentration-response data points

Data Analysis

- 1. Requires consideration of concentration-response modeling
- 2. Derive values relevant for toxicological interpretation:
 - Potency
 - Efficacy
- Other considerations:
 - Identifying technological or assay issues
 - Integrating multiple readouts for some assays (e.g., cytotoxicity)

Understanding & Comparing Pipeline Processes

• Tox21 Informatics Workgroup

- Nisha Sipes*
- Jui-Hua Hsieh
- Keith Shockley
- Ruili Huang
- Matt Martin
- Richard Judson
- Keith Houck
- Huixiao Hong

Representatives from the Tox21 Partner agencies convened to focus on Tox21 Informatics needs.

Comparing hit calling approaches and better understanding similarities/differences was among their goals.

*Analyses results presented herein were generously provided by Nisha Sipes

Publicly Available Community Resource

Four analysis pipelines for Tox21 data

Name of Method	Institute	Public Access
		Shockley KR. 2012. Environ Health
3Stage	NIH/NIEHS	Perspect 120:1107–15.
CurveClass	NIH/NCATS	tripod.nih.gov & PubChem
		https://ntp.niehs.nih.gov/whatwestud
CurvepwAUC	NIH/NIEHS/DNTP	y/tox21/index.html
		https://www.epa.gov/chemical-
		research/exploring-toxcast-data-
TCPL	US EPA/CCTE	downloadable-data

1. **3Stage**: Shockley KR (2012) Environ Health Perspect

2. CurveClass: Inglese J et al (2006) PNAS; Huang R et al (2011) EHP; Huang R et al (2014) Sci Rep; Huang R et al (2016) Methods in Moledular Biology 1473.1

3. CurvepwAUC: Hsieh JH et al (2015) J Biomol Screen; Hsieh JH (2016) High-Throughput Screening Assays in Toxicology

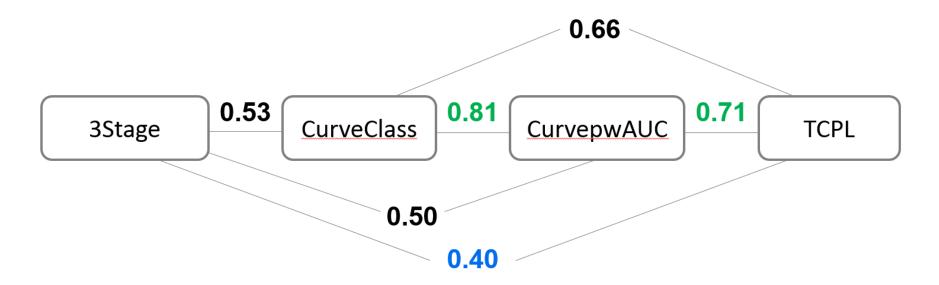
4. TCPL: Filer DL et al (2017) Bioinformatics

Diverse ways to fit data

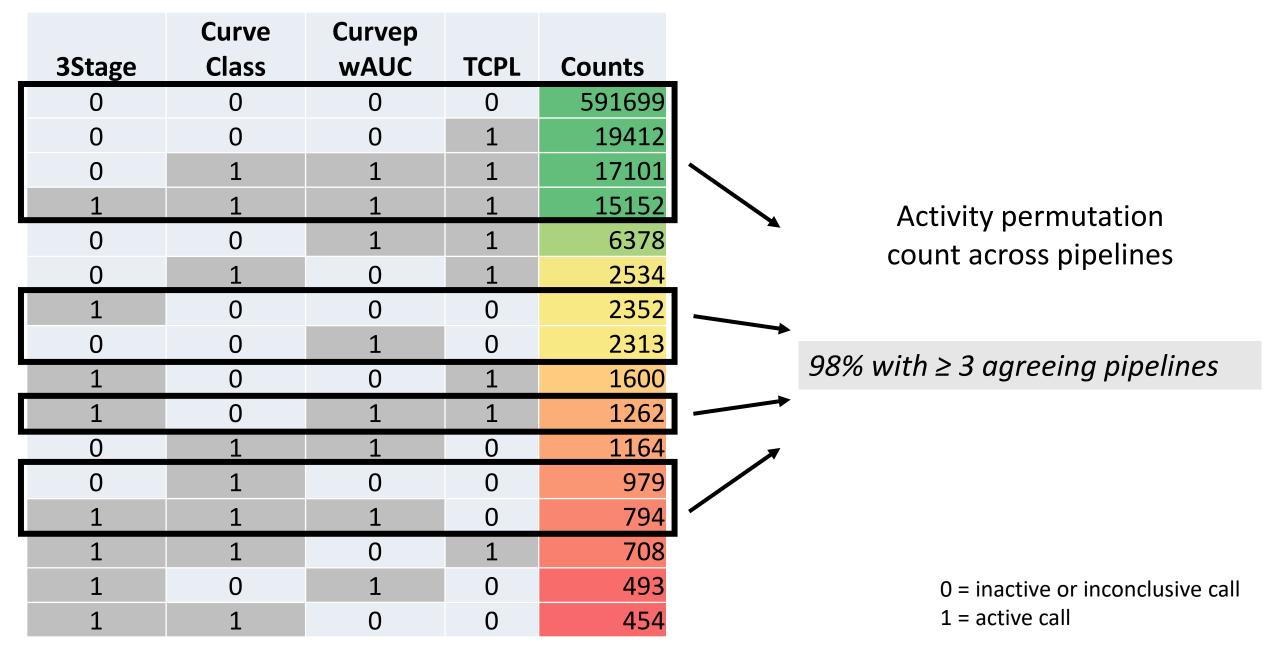
	3Stage	CurveClass	CurvepwAUC	TCPL		
data collapsing method	majority vote + curve shape; mean or median	Curve Rank + reproducibility; mean	median	N/A		
curve fitting model	constant or Hill model	Hill model model free		constant, gain-loss, or Hill model		
Add'l info	outlier detection	outlier detection	outlier detection	fitting flags		
		8 9 10¹ 10 ² 10³ 10 ²				

Response threshold varies

	3Stage	CurveClass	CurvepwAUC	TCPL
				Custom or a multiple of
respon	se 3SD of normalized	3SD of normalized	Threshold to reduce	BMAD:
thresho	Id responses in DMSO	responses in DMSO	POD variance	Baseline Median Abs Dev
(THR)	plates	plates	using 5-45%	(MAD for DMSO/low concs
				across entire assay)
		on	ing replicates each ate	


Summary of Activity Calls

	3Stage	CurveClass	CurvepwAUC	TCPL
Active	22,815	38,886	44,657	64,147
	(3.4%)	(5.9%)	(6.7%)	(9.7%)
Inactive	564,504	552,106	580,851	600,248
	(85.0%)	(83.1%)	(87.4%)	(90.3%)
Inconclusive	77,076 (11.6%)	73,403 (11.0%)	38,887 (5.9%)	NA


Pairwise Intraclass Correlation (ICC)

Summary of Activity Calls (in %)								
Call	3Stage	Curve Class	Curvep wAUC	TCPL				
inactive	96.6	94.1	93.3	90.3				
active	3.4	5.9	6.7	9.7				

Note: for this analysis inconclusives were considered inactive

High agreement occurs often

Most discrepancies likely due to call adjustments

3Stage	Curve Class	Curvep wAUC	TCPL	Counts
0	0	0	0	591699
0	0	0	1	19412
0	1	1	1	17101
1	1	1	1	15152
0	0	1	1	6378
0	1	0	1	2534
1	0	0	0	2352
0	0	1	0	2313
1	0	0	1	1600
1	0	1	1	1262
0	1	1	0	1164
0	1	0	0	979
1	1	1	0	794
1	1	0	1	708
1	0	1	0	493
1	1	0	0	454

3Stage	Curve Class	Curvep wAUC	TCPL	Counts	
inconclusive	1	1	1	17070	>99%
0	1	1	1	31	

Most discrepancies likely due to call adjustments

	Curve	Curvep								
3Stage	Class	wAUC	TCPL	Counts		Curve	Curvep			
0	0	0	0	591699	3Stage	Class	wAUC	TCPL	Counts	
0	0	0	1	19412						
0	1	1	1	17101	inconclusive	inconclusive	inconclusive	1	16511	85%
1	1	1	1	15152	inconclusive	inconclusive	0	1	862	
0	0	1	1	6378	0	0	0	1	595	
0	1	0	1	2534	inconclusive	0	0	1	355	
1	0	0	0	2352	inconclusive	0	inconclusive	1	353	
0	0	1	0	2313	0	inconclusive	0	1	259	
1	0	0	1	1600	0	inconclusive	inconclusive	1	284	
1	0	1	1	1262	0	0	inconclusive	1	193	
0	1	1	0	1164	0	0	inconclusive		т Ј Ј	
0	1	0	0	979						
1	1	1	0	794						
1	1	0	1	708						
1	0	1	0	493						
1	1	0	0	454						

Most discrepancies likely due to call adjustment

		Curve	Curvep								
	3Stage	Class	wAUC	TCPL	Counts		Curve	Curven]
	0	0	0	0	591699	3Stage	Class	Curvep wAUC	TCPL	Counts	
	0	0	0	1	19412						
	0	1	1	1	17101	inconclusive	inconclusive	inconclusive	1	16511	85%
j	1	1	1	1	15152	inconclusive	inconclusive	0	1	862	

The Integrated Chemical Environment web tool (ICE) developed by NICEATM (NTP Interagency Center for the Evaluation of Alternative Test Methods) contains curated high-throughput screening data (cHTS):

- ICE cHTS data is curated tcpl data for both Tox21 and ToxCast.
 - Identifies noisy curves and integrates flags from tcpl outputs
 - Active tcpl calls rendered "Flag-OMIT" by curation
 - Flag-OMIT calls are highly correlated to the inconclusive calls from the other methods
- Using ICE cHTS data for tcpl outputs is anticipated to resolve many of the inconsistencies between inconclusive calls across 3Stage, CurveClass, and CurvepwAUC vs. actives in tcpl.

https://ice.ntp.niehs.nih.gov/

Summary and Conclusion

- Four methods have been developed for analyzing the Tox21 quantitative high-throughput concentration-response data
- Generally good agreement especially for robust actives
- Working toward a consensus:
 - Majority of actives have at least three methods in agreement
 - Further curation of tcpl to address actives with flags (i.e., ICE cHTS) increases agreement with other methods

Abbreviations

- BMAD: Baseline median absolute deviation
- CCTE: Center for Computational Toxicology and Exposure
- CurvepwAUC: Curvep weighted area under the curve
- MAD: Median absolute deviation
- EPA: United States Environmental Protection Agency
- HTS: High-throughput screening (qHTS; quantitative HTS)
- ICC: Intraclass correlation
- NCATS: National Center for Advancing Translational Sciences
- NIEHS: National Institutes of Environmental Health Sciences
- NIH: National Institutes of Health
- NTP: National Toxicology Program
- POD: Point of departure
- SD: Standard deviation
- TCPL: ToxCast Pipeline

References

- Filer et al. Bioinformatics. 2017. 33(4): 618-20. doi: 10.1093/bioinformatics/btw680
- Hsieh et al. 2015. J Biomol Screen. 20(7): 887-97. doi.org/10.1177%2F1087057115581317
- Hsieh J. 2016. *Methods Mol Biol.* 1473:143-52. *doi:* 10.1007/978-1-4939-6346-1_15
- Huang et al. 2011. Environ Health Perspect. 119(8):1142-8. doi.org/10.1289/ehp.1002952
- Huang R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. In: Zhu H, Xia M, editors. High-Throughput Screening Assays in Toxicology. Methods in Molecular Biology. 1473. 1 ed: Humana Press; 2016
- Inglese *et al*. 2006. *Proc Natl Acad Sci USA*. 103(31):11473-8. doi.org/10.1073/pnas.0604348103
- Shockley. 2012. Environ Health Perspect. 120(8):1107-15. doi: 10.1289/ehp.1104688