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SEPA Imaging-Based High-Throughput Phenotypic Profiling

- (HTPP)
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Healthy and High-throughput Image analysis and Downstream analysis:
diseased patient staining and imaging: feature extraction mapping relationships
cell lines e.g. Cell Painting assay

Chandrasekaran et al. Nat Rev Drug Discov. 2020 Dec 22:1-15

* A high-throughput testing strategy where rich information present in biological images is reduced to
multidimensional numeric profiles and mined for information characteristic to a chemical’s biological activity.

e Originated in the pharmaceutical sector and has been used in drug development to understand disease
] mechanisms and predict chemical activity, toxicity and/or mechanism-of-action.
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Tier 1 \

* New Approach Methodologies (NAMs) are any ( '
. . Chemical Structure Broad Coverage, Multiple cell types
technology, methodology, approach or combination ‘ and Properties ‘ High Content Assay(s) /- metabolic competence
thereof that can be used to provide information on ' |
chemical hazard and risk that avoids the use of intact
animals. _ l - —
Mo Defined Biological Defined Biological Target ‘
Target or Pathway | or Pathway |
* NAMs are a potential means to reduce the use of \ /
animals in toxicity testing and accelerate the pace of ([ | Tierz )
chemical risk assessment.
l SEI‘;C:;:'YZWG ‘ } Orthogonal confirmation
e US EPA CompTox Blueprint advocates the use of high \
throughput profiling (HTP) assays as the first tier in / I Tier 3 ‘<
a NAMs-based hazard evaluation approach. 1 l
Existing AOP No AOP
* HTP assay criteria: 1 . 1 ’
1. Yield bioactivity profiles that can be used for - - .
potency estimation, mechanistic prediction and \ Assav:f]o?;ﬁerm | Grﬁﬁ:ﬁﬁ;fsm‘;:lnd :l- m?;ntfc;';:ﬂ::seﬁm
evaluation of chemical similarity.  and Systems Modeling ) l Systems y and Susceptible Populations
2. Compatible with multiple human-derived culture \ /
models. ] i |
3. Concentration-response screening mode. Estimate Point-of-Departure  Estimate Point-of-Departure Estimate Point-of-Departure
4. Cost-effective. Collat PhercmypePertrbation stenAe? OrganevelEfectwitnost AOP

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322



SEPA HTPP with the Cell Painting Assay
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Cell Painting is a profiling method that
measures a large variety of phenotypic
features in fluoroprobe labeled cells in vitro.

* High-throughput
* Scalable
e Amenable to lab automation

 Deployable across multiple human-
derived cell types.

* Reproducible
e Cost-effective (¢ / well)
* Infrastructure investment

* High volume data management

Laboratory & bioinformatics workflows for
conduct of this assay have been established
at CCTE.

OPEN ) ACCESS Freely available online @PLOS | ONE

Multiplex Cytological Profiling Assay to Measure Diverse
Cellular States

Sigrun M. Gustafsdottir, Vebjorn Ljosa®, Katherine L. Sokolnicki*?, J. Anthony Wilson-®, Deepika
Walpita, Melissa M. Kemp, Kathleen Petri Seiler*c, Hyman A. Carrel*, Todd R. Golub, Stuart L. Schreiber,
Paul A. Clemons™, Anne E. Carpenter™, Alykhan F. Shamji'

Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
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“EPA\ . Image Acquisition & Phenotypic Feature Extraction
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5 Compartments
NUCLEUS RING CYTOPLASM MEMBRANE CELL

49 Feature Categories
(ex. MITO_Texture_Cytoplasm)

~
1300 features / cell
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A Solvent control (0.5% DMSO) Berberine chloride (10 pM

Solvent control (0.5% DMSO) Ca-074-Me (1 pM) Solvent control (0.5% DMSO)  Etoposide (3 uM)

Solvent oonrol (0.5% DMSO Rapamycin (100 piv)
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» Strong phenotypes are observed qualitatively and produce distinct profiles when measured quantitatively.

Adapted from Nyffeler et al. Toxicol Appl Pharmacol. 2020 Jan 15;389:114876



SEPA U-2 OS ToxCast Screen Experimental Design

Environmental Protection
Agency

Cell Type(s) 1 U-2 OS
Culture Condition 1 DMEM + 10% HI-FBS
TSCA Chemicals of interest to USEPA
Chemicals 1,202 Includes 462 APCRA case study chemicals
Includes 179 chemicals with annotated molecular targets

Time Points: 1 24 hours

: igh Treughot Pt Profing Cet i

Concentrations: 8 3.5 log,, units; ~half-log,, spacing

Biological Replicates: 4 --
Accelerating the Pace of Chemical Risk Assessment i International collaboration of regulatory scientists focused on next generation chemical risk

APC RA 2 9 assessment including deriving quantitative estimates of risk based on NAM-derived potency
information and computational exposure estimates.

PK parameters necessary for in vitro to in vivo extrapolation (IVIVE)

Kavlock et al. (2018) APCRA Chemicals » . . .
- Chem. Res. Tox; 31(5): 287-290 in vivo toxicity data
Preliminary results. Do not cite or quote.
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U-2 OS ToxCast Screen Dose Plate Design

Label

Reference Chemicals: Molecular Mechanism-of-Action Test Concentrations
Etoposide DNA topoisomerase inhibitor 0.03-10 uM
all-trans-Retinoic Acid Retinoic acid receptor agonist 0.0003 -1 uM
Dexamethasone Glucocorticoid receptor agonist 0.001 -3 uMm
Trichostatin A Histone deacetylase inhibitor 1uM
Staurosporine Cytotoxicity control 1puM
DMSO Vehicle control 0.5%

Preliminary results. Do not cite or quote.



SEPA Assay Performance / Reproducibility
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1300 features (ordered by organelle/channel)

= Reference chemicals produce reproducible and distinct profiles.

Preliminary results. Do not cite or quote.



EPA HTPP Data Analysis Pipeline
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Data reduction \Q Concentration Response Modeling
cell-level data . -
! Calculate Response
_ i Metrics See Nyffeler et al. SLAS Discov. 2021
Normalization cell value — medianpyso A | Feb;26(2):292-308.
MAD normalization 1.4826 MADpyso ! -
v E Y
normalized E
cell-level data E
Aggregation Fit Multiple Curve
median | Shapes
well-level data E l
Standardization i Best Model e
Z transformation : Selection . '
scaled > clipped :
well-level data well-level data o o A1
Berberine chloride
-20-15-10-56 0 5 1015 20 Mito_Cells_Morph_STAR

Preliminary results. Do not cite or quote.



SERRA Comparison of Concentration Response Analysis Approaches
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SLAS Discovery
2021, Vol. 26(2) 292-308

Comparlson of ApproaChes for Johanna Nyffeler' 2| Derik E. Haggard" 2", Clinton Willis'®,  ©2020 Society for Laboratory
. . . e o . . . . Automation and Screenin,
Determln "'Ig BlO&Cthlty HItS from R. Woodrow Setzer', Richard Judson', Katie Paul-Friedman'‘", Dék |0?| |77,,247255522§950245

. . . . Logan J. Everett''”, and Joshua A. Harrill' journals.sagepub.com/home/jbx
High-Dimensional Profiling Data ®SAGE
Berberine chloride Null chemicals Duplicated test chemicals
Feature-level fitting (BMDExp) - I - © e Yo 161 3 °°
Feature-level fitting (tcplfit2) - 4k - e @1 ofdow 19°1° ok 0
Eigenfeature-level fitting - Q@ 7 y cﬁ@—o o
Category-level aggregation (BMDEXp) - e g . o R 1°7=° T bl ¢
Category-level aggregation (tcplfit2) * @ 7 ° e elo & 1 2P o dJo—
Category-level fitting Mahalanobis - c@ § Cm?% 1 &9 ©
Category-level fitting ssGSEA - P ° . ° et i 1 o of=e
Global Mahalanobis - fp . $ 1} o
Global Euclidean - e ° dP {1 oF°
2 4 0 1 K 0 1' 2 0.0 0.5 1.0
PAC logo(uM) PAC range

* Analysis of reference chemicals identified methods that 1) minimized false positives and 2)
I maximized reproducibility of potency estimates.
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Phenotype Altering Concentrations (PACs)

Mahalanobis Distance (D,,):

* A multivariate metric that measures the distance between a treatment and a distribution of controls in feature space.

* Accounts for unpredictable changes in cell states across test concentrations and inherent correlations in profiling data.

Global Mahalanobis

1300 features

derive a Mahalanobis distance
(relative to control wells)

Feature-level
fitting

group them in
49 categories

‘| derive a Mahalanobis distance
(relative to control wells)

Category-level Mahalanobis

Mahalanobis distance

— 1 BMC \
PAC

M—i’ 49 BMCs /

0.01
concentration (pM)

* Chemicals where a BMC can be determined using either the global or category D,, approach are considered active.

* The minimum of the global or most sensitive category BMC is the Phenotype Altering Concentration (PAC)

Preliminary results. Do not cite or quote.



SEPA Reproducibility: Potencies
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= Potency estimates vary less than /2 an order of magnitude

Preliminary results. Do not cite or quote.
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50 1 inactive
Group
. 2 1 ©  inactive
active 40 . .
® o inconclusive
> —_
"g = 17 o active
201 $
© o 0-
A a % ToxCast
- o active
647 N 50 ]
« 20 5 -1 50
(;)< o
e z 0
= -2 -
S 104 30
20
T =7 10
Inactive 0- 0
n =136 n =429 -4 e
inactive inconclusive active -3 -2 -1 0 1 2 inactive
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= Potency estimates vary less than % an order of magnitude

Preliminary results. Do not cite or quote.
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Comparison to /In Vivo Toxicity Data & Exposure Estimates

| Predicted exposure | |

New approach methodologies (NAMs)

Exposure predictions Toxicological

(EPA ExpoCast) threshold of

* Systematic Empirical Evaluation concern
of Models (SEEM) version 3 (TTC)

* Inferred from human

in vivo point-of-departure |

Toxcast BPAC HTPP BPAC
(kM) (nM)

biomonitoring data, production
volume and use categories
(industrial / consumer use)

oo A

In vitro-to-in vivo
extrapolation (IVIVE)
high-throughput toxicokinetics (httk)

Database of in vivo effect values (EPA
— ToxValDB)

*  Mammalian species

e oral exposures

* Various study types

* NOEL, LOEL, NOAEL, LOAEL

* mg/kg/day

Toxcast AED HTPP AED
(mg/kg bw/day) (mg/kg bw/day)
5% 50% 95% 5% 50% 95% 5%
1 N\ I 1 F Y 'l
r @ | I @, { |

N NS N

- POD: point-of-departure
AED: administered equivalent dose

16
Preliminary results. Do not cite or quote.
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* 303 chemicals were active and had pharmacokinetic (PK) information

HTPP

« [ HTPP above
|. |:| ToxCast (Paul Friedman et al. 2020)
O tte

below

~
o

1 NAM < in vivo NAM > in vivo

ToxCast

N
o
1

within

Number of chemicals

within below

-3.8 -0.8 02

o 8 7 6 5 4 3 2 4 0 1 2 3 4 5 6
log:o (TTC or AED 50" / PODy.q )

= HTPP AEDs are higher than ToxCast-derived AEDs and TTC values

— = 78% of HTPP AED are within 2 orders of magnitude of the in vivo POD .

Preliminary results. Do not cite or quote.




A Comparison to Exposure Estimates

Potential for humans
to be exposed to
bioactive concentrations

human exposure
(ExpoCast) 80
® 604 | chemicals
q | of lesser
E I | concern
5% 50% 95% g . |
[ O | S 5 I
log,o(mg/kg/day) E
§ 20 - Y
=
= for 49% of chemicals, predicted exposure | | il
is > 1000x lower than estimated bioactivity 29
E> for d Sma" SEt Of Chemica|S, the BER WwWas : Bioactivity-Eiposure Ratio ’

negative, indicating a potential for humans
to be exposed to bioactive concentrations
of these chemicals

] 18

Preliminary results. Do not cite or quote.




T i Summary and Conclusions

High-Throughput Profiling: Developed experimental designs and scalable laboratory
workflows for high-throughput phenotypic profiling (HTPP) of environmental chemicals
that can be used in multiple human-derived cell types.

* Potency Estimation: Developed high-throughput concentration-response modeling
workflows to identify thresholds for perturbation of cell morphology (e.g. PACs).

 IVIVE: Potency estimates can be converted to administered equivalent doses (AEDs)
using high-throughput toxicokinetic modeling.

* Bioactivity to In Vivo Effect Value Ratio Analysis: AEDs derived from the HTPP assay
were conservative or equivalent to traditional PODs a majority of the time.

 Bioactivity to Exposure Ratio (BER) Analysis: AEDs derived from the HTPP assay were
compared to high-throughput exposure predictions. There were very few chemicals
where AEDs were within the range of exposure predictions.

* Comparison to ToxCast: Applications using HTPP NAMs potencies as input yielded
comparable results compared to the use of ToxCast NAMs potencies.
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