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A frequent problem in toxicology….
• We have a large number of chemicals to screen for potential risk
• We want to know about hazard or toxicity that is hard to measure for all 

these chemicals (expensive, slow, unethical…)
• We have some previously-measured examples of this information for some 

chemicals
• We have information that is easier to measure (rapid, inexpensive)

• Molecular structure
• In vitro bioactivity in high-throughput screening assays

• We don’t have a clear idea of how the “hard” info relates to the “easy” info
• no mechanistic model

• How can we use the available “easy” data to predict the “hard-to-measure” 
data?

Idakwo et al. 2018; Wang et al. 2020



Machine learning: Computational algorithms that 
can infer patterns from data

Data
Target/

response
Features

y1 x1 x2 …

[value1] [value1] [value1] …

[value2] [value2] [value2] …

… … … …

Target/response (y): what we want to 
predict (e.g. toxicity or hazard)
Features (x1, x2…): Information 
available to predict response (e.g. 
structure, in vitro HTS bioactivity, etc.)



Two categories of patterns to be inferred

Data
Target/

response
Features

y1 x1 x2 …

[value1] [value1] [value1] …

[value2] [value2] [value2] …

… … … …

Data
Features

x1 x2 …

[value1] [value1] …

[value2] [value2] …

… … …

Supervised: Infer relationship 
between target and features. 
Goal: predict target from features.

Unsupervised: No target to predict. 
Infer descriptive patterns in features 
(e.g., clustering)



Training a ML model

Training data
Target/

response
Features (predictors)

y1 x1 x2 …

[value1] [value1] [value1] …

[value2] [value2] [value2] …

… … … …

ML Algorithm:
Learns some function
y = f(x1, x2, …) + error

Iteratively optimize to 
minimize error

MODEL
y = f (x1, x2, …)

Algorithms can include:
• k nearest neighbors
• decision trees
• support vector machine
• naïve Bayes

• random forest
• artificial neural networks
• etc.



Training a ML model

Training data
Target/

response
Features (predictors)

y1 x1 x2 …

[value1] [value1] [value1] …

[value2] [value2] [value2] …

… … … …

ML Algorithm:
Learns some function
y = f(x1, x2, …) + error

Iteratively optimize to 
minimize error

MODEL
y = f (x1, x2, …)

Regression model: y is numeric & continuous (e.g. LD50)
Classification model: y is categorical (e.g. hepatic toxicity yes/no)



Training a ML model

Training data
Target/

response
Features (predictors)

y1 x1 x2 …

[value1] [value1] [value1] …

[value2] [value2] [value2] …

… … … …

ML Algorithm:
Learns some function
y = f(x1, x2, …) + error

Iteratively optimize to 
minimize error

MODEL
y = f (x1, x2, …)

Classification model: Usually predicts probability of category
Usually dichotomized as “prob of category A > 50% →
model predicts category A”

But threshold can be tuned – not necessarily 50%!



Evaluating performance of a ML model
Test data

Target/
response

Features (predictors)

y x1 x2 …

[value1] [value1] [value1] …

[value2] [value2] [value2] …

… … … …

y_pred

[value1]

[value2]

…

MODEL
y = f (x1, x2, …)

Metric: Error between predicted & observed y



Error metrics for (binary) classification models: 
confusion matrix

Predicted negative Predicted positive
Observed negative True negatives (TN) False positives (FP)
Observed positive False negatives (FN) True positives (TP)

Accuracy: (TN + TP) / (TN + TP + FN + FP)
Sensitivity (true positive rate, TPR): TP/(TP + FN)
Specificity (true negative rate, TNR): TN/(TN + FP)
Balanced Accuracy: (Sensitivity + Specificity)/2
Positive Predictive Value (PPV): TP / (TP + FP)
False Discovery Rate: 1 – PPV
[…lots more!]



Confusion matrix varies 
with threshold

Observed 
positive

Observed 
negative

Threshold 
probability to 
predict positive

TN TP

FP

FN

More separation 
between peaks 
= more 
informative 
model

(synthetic example data)



Observed 
positive

Observed 
negative

Threshold 
probability to 
predict positive

TN TP

FP

FN

Lower threshold =
Higher TPR
Higher FPR

Confusion matrix varies 
with threshold

(synthetic example data)



Observed 
positive

Observed 
negative

Threshold 
probability to 
predict positive

TN TP

FP

FN

Higher threshold =
Lower TPR
Lower FPR

Confusion matrix varies 
with threshold

(synthetic example data)



Area under receiver-operator characteristic (ROC) curve 
tells us about separation between peaks & 
model performance over all thresholds

Threshold 
probability to 
predict positive Perfectly 

uninformative 
model (no 
separation 
between 
peaks)
AUC = 0.5

Trained 
model
AUC = 0.91
(for this fake 
example)



Summary of machine-learning model process

Training set Train model

Test set

Prediction set
(new features)

Evaluate model

Apply model

Gather data
Clean data



Challenge in classification models for predictive 
toxicology: imbalanced data

From Mansouri et al. 2020: ComPARA training set 
(response = in vitro androgen activity in ToxCast, yes/no) 

88% 
inactive for 
binding

97% 
inactive for 
agonism

90% 
inactive for 
antagonism

Problem:

A ML model that simply predicted 
“inactive” for everything would 
have a 97% accuracy rate for 
agonism!

Many toxicology-related data sets 
are imbalanced like this (Idakwo et al. 
2018; Wang et al. 2020)

How can we build a ML model 
that properly predicts the 
minority class?



Strategies to address imbalanced training data 
(Branco et al., 2016)

• Algorithm-based: Make the model less sensitive to imbalance
• Boosting: iteratively correct misidentified instances in the training class
• Bagging: trains multiple versions of the model on subsets or bootstrap-resampled 

versions of the data set
• Cost function: During model training, weight errors more heavily for minority-class 

examples
• Sampling-based: Pre-process training data to balance out the classes

• Undersampling: Remove some majority-class examples
• Oversampling: Repeat some minority-class examples
• Interpolate between minority-class examples & nearest neighbors: e.g. SMOTE 

(Synthetic Minority Over-sampling TEchnique) (Chawla et al., 2002)
• Generative Adversarial Networks (GAN): train a second ML model to generate 

synthetic minority data (Douzas & Bacao, 2018; Green et al. 2021)



Example of SMOTE “clover” data from https://sci2s.ugr.es/keel/datasets.php 
(Alcalá-Fdez et al. 2011)

Drawback: SMOTE can blur boundaries by 
interpolating to majority-class near 
neighbors

https://sci2s.ugr.es/keel/datasets.php


It turns out that ML algorithms and imbalanced data 
strategies perform very differently for different data sets

Figure 9A from Wang 
et al. 2020 (literature 
review of ML methods 
in predictive 
toxicology)

Variability in model 
performance not 
explained by training 
dataset size or by ML 
algorithm used

Authors suspect 
dataset-specific 
effects



ML research: performance depends on frequency 
of 4 different types of data points (Napierla & Stefanowski
2015; Garcia et al. 2020; Stefanowski 2016)

Safe Rare

Borderline
Outlier

Adapted from Garcia et al. (2020)

Napierla & Stefanowski 2015:

Undersampling seems to work 
better for borderline examples

SMOTE seems to work better for 
outlier & rare examples



Suggestion: Develop a more systematic approach to 
characterize these “data difficulty factors” in predictive 
toxicology datasets

Figure 9A from Wang et 
al. 2020 (literature review 
of ML methods in 
predictive toxicology)

Could it be color-coded 
by proportion of safe, 
borderline, rare, and 
outlier data?

Could we identify “best 
practices” based on these  
dataset characteristics?



Case study: Machine learning for in vitro-in vivo
extrapolation (Ring, Rager, et al. 2021)

• Target: in vivo pathway-level 
transcriptomic activity in rat 
liver for a given chemical & dose 
(DrugMatrix and TG-Gates 
datasets)

• Features:
• in vitro ToxCast bioactive 

concentration (AC50)
• phys-chem properties
• in vivo dose
• toxicokinetic model 

predictions of body 
concentration at in vivo dose

735 pathways

1803 pathways

Vast majority of pathways had <30% of 
examples active!

Challenge: Highly imbalanced data



Approach to imbalanced data: SMOTE (Ring, Rager, et 
al. 2021)

High-dimensional feature set: in vitro bioactivity for 144 Tox21 assays

We did not evaluate “data difficulty factors” in this analysis

(Illustration of SMOTE on example data from earlier, not our actual data)



Result: Pathway models with decent AUC-ROC 
(Ring, Rager, et al. 2021) 



Result: Apply 
models to 
predict pathway 
activity for 6617 
Tox21 chemicals 
at a range of 
doses (Ring, Rager, et al. 
2021)



Summary
• Machine learning is a powerful tool for predictive toxicology
• But its performance is affected by dataset-specific characteristics

• Imbalanced data
• Safe, borderline, rare, and outlier data points

• Strategies to address imbalanced data exist & are fairly successful
• e.g. SMOTE, GAN
• but dataset-specific characteristics affect these strategies as well

• Suggestion: Develop a more systematic approach to characterizing “data 
difficulty factors”

• Case study: Machine learning for in vitro-in vivo extrapolation
• Applying SMOTE to address highly imbalanced training data
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