

www.epa.gov

Introduction

What is phenotypic profiling?

Dispensina

Chemicals

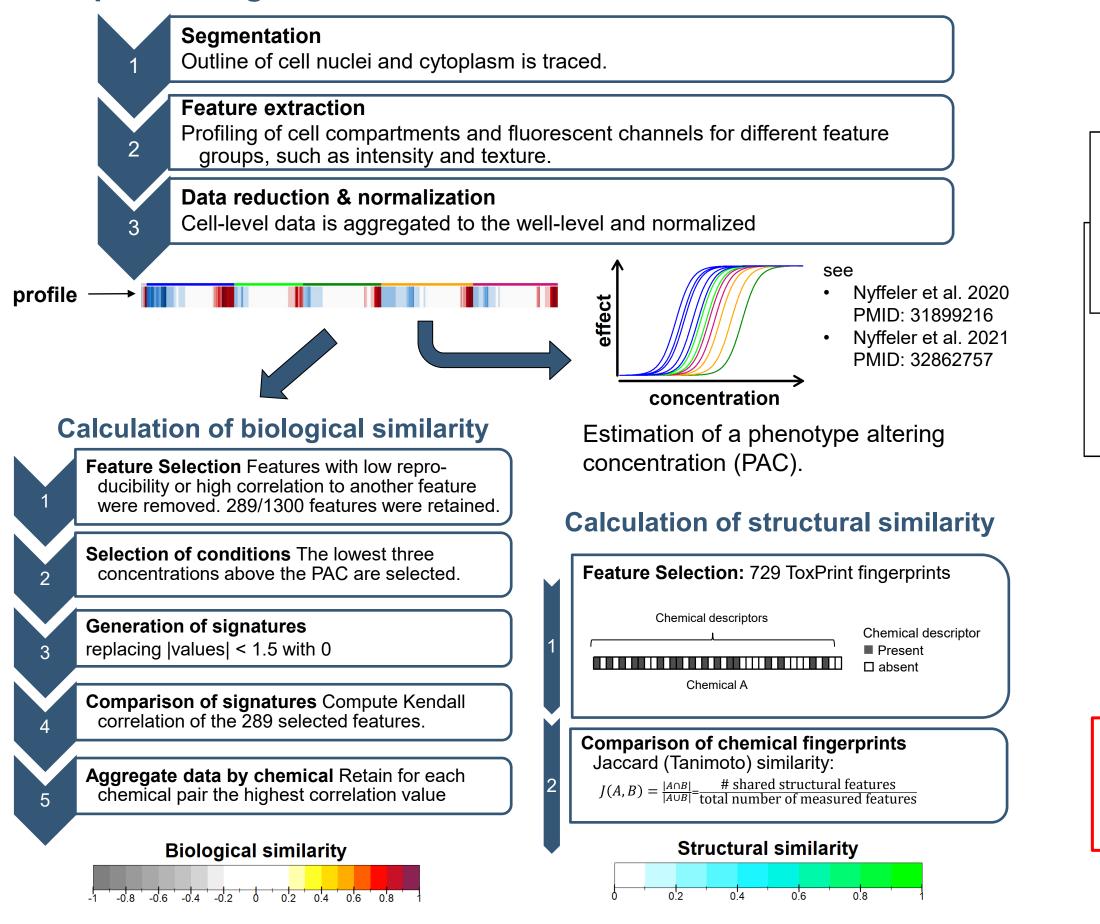
labelina

24 h

Labelir

- Image-based phenotypic profiling with the Cell Painting assay is a chemical screening method that measures a large variety of morphological features of individual cells in in vitro cultures.
- No requirement for *a priori* knowledge of molecular targets.
- Is used as an efficient and cost-effective for evaluating chemical method bioactivity

Identification of bioactive chemicals


inactive chemicals

U-2 OS concentration-responsiveness. osteosarcoma cell Fluorescent labels **DNA**: H-33342 RNA: SYTO14 ER: Concanavalin A-488 Color Key : Phalloidin-568 : wheat germ gglutinin (WGA) -555 Mitochondria: MitoTracker

Data processing

Methods

Experiment

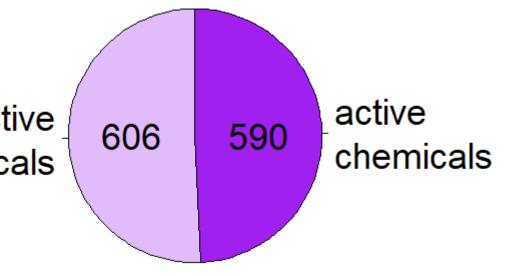
U.S. Environmental Protection Agency Office of Research and Development

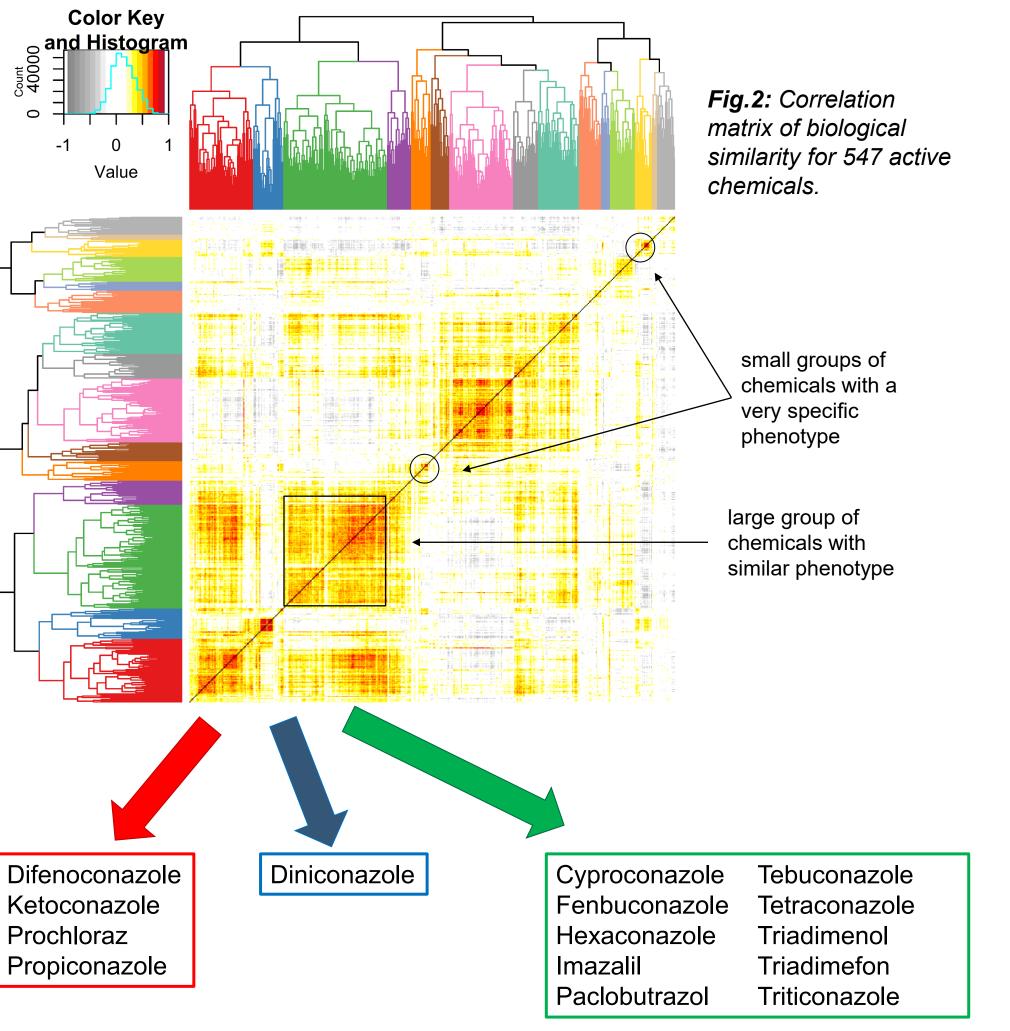
High-throughput phenotypic profiling for grouping of 68 conazoles

Johanna Nyffeler^{1,2}, Felix Harris^{1,3}, Clinton Willis¹, Katie Paul Friedman¹, Joshua Harrill¹

¹US Environmental Protection Agency, Center for Computational Toxicology & Exposure, Office of Research and Development, Research Triangle Park, NC. ²ORISE, Oak Ridge, TN. ³ORAU, Oak Ridge, TN

Results: Screen of 1199 chemicals



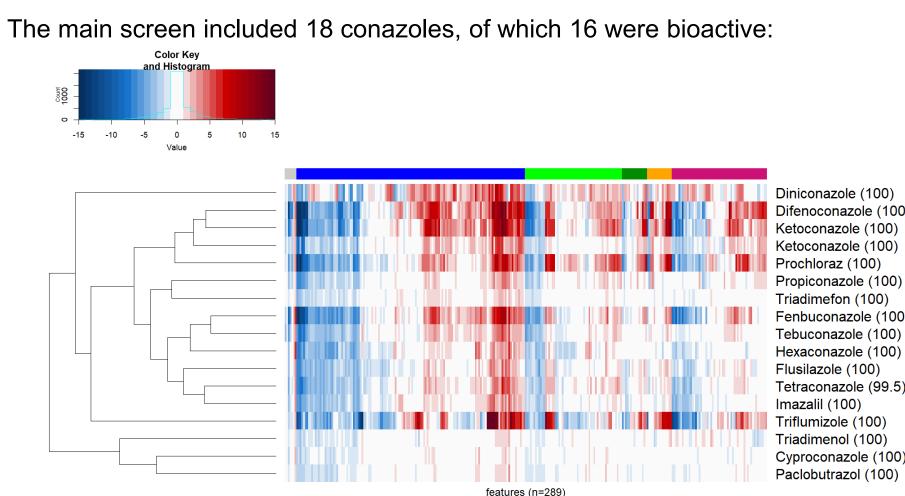

Fig.1: Results of screening 1199 chemicals from the ToxCast library. Note that three chemicals had < 4 non-cytotoxic concentrations left and could not be analyzed for

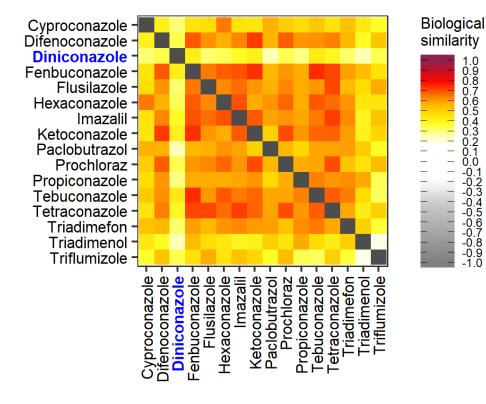
→ 49% of the

were active

tested chemicals

Clustering of phenotypic profiles




➔ Diniconazole clusters away from all other conazoles.

Aims

- assay
- 2. Examine similarities in amongst active chemicals.
- 3. Case study of conazoles:

Results: Conazoles (I)

→ The phenotypic profile of diniconazole is different from that of all other tested conazoles.

This work does not reflect USEPA policy. Mention of tradenames or products does not represent endorsement for use

1. Screen a set of 1199 environmental chemicals in the HTPP

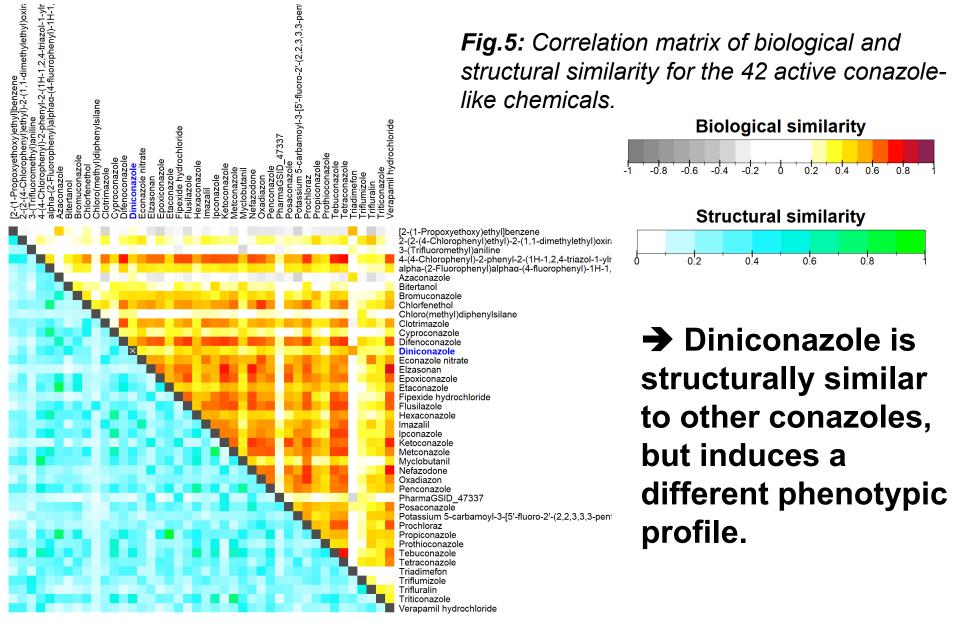
phenotypic profiles observed

a) Can conazoles be grouped based on their phenotype?

b) Can similarities and differences in phenotypic profiles of conazoles be confirmed in a secondary screen?

Fig.3: Heatmap of the phenotypic profile of 16 conazoles. The number in brackets indicates the test concentration in μM . Note that ketoconazole was tested twice.

> Fig.4: Correlation matrix of biological similarity for the 16 active conazoles.


Conclusions

- a small group of chemicals.

→ HTPP can be used to group chemicals based on biological similarity.

Results: Conazoles (II)

For the follow up screen, chemicals available in the ToxCast inventory were selected if they had structural similarity (Jaccard similarity > 0.5) with one of the initial conazoles. A total of 69 conazole-like chemicals were retested in HTPP, of which 42 were active.

Chemicals with the highest biological similarity to diniconazole:

	Biol							E	Biol		
DTXSID	Chemical Name	Conc [uM] Sim				DTXSID	Chemical Name	Conc [uM] Sim			
1 DTXSID0021125	Phenolphthalein	100	0.55	*			2,2'-Methylenebis(4-methyl-6-tert-				
2 DTXSID2032398	Fludioxonil	30.1	0.547			16 DTXSID4020870	butylphenol)	30	0.455		
3 DTXSID2032550	Fenpyroximate (Z,E)	100	0.546			16 DTXSID1034181	Raloxifene hydrochloride	30	0.455		
4 DTXSID8046666	Methyl Violet	3	0.535			19 DTXSID8041248	2,5-Di-tert-butylbenzene-1,4-diol	100	0.451		
5 DTXSID2037712	4,4',4"-Ethane-1,1,1-trivltriphenol	100	0.516			20 DTXSID0020573	17beta-Estradiol	100	0.449	*	
	Thiophanate-methyl	100	0.511	*		21 DTXSID5032525	Bifenazate	100	0.448		
7 DTXSID4022442		100	0.509			21 DTXSID7024081	Endothal	100	0.448		
	17alpha-Ethinylestradiol	100	0.503	*			Dodecyltrimethylammonium				
	Tri-o-cresyl phosphate	100	0.491			23 DTXSID1026900	chloride	30	0.443		
	Auramine hydrochloride	10	0.482			24 DTXSID1033664	17-Methyltestosterone	100	0.436	*	
11 DTXSID2023224	, , , , , , , , , , , , , , , , , , ,	100	0.48	*		25 DTXSID9032113	Tebuconazole	100	0.435		
			0.10	*		26 DTXSID6020226	Cadmium chloride	100	0.429		
12 DTXSID6021248	Rotenone	1	0.478			27 DTXSID9032329	Bensulide	100	0.423		
13 DTXSID3020465	Diethylstilbestrol	30	0.471	*		28 DTXSID8032548	Fenbuconazole	100	0.422		
14 DTXSID1021243		10	0.458			29 DTXSID5023871	Amitraz	100	0.42		
15 DTXSID8029868		94.5	0.456			30 DTXSID7029879	Ketoconazole	100	0.417		
16 DTXSID9032379		99.6	0.455		- *	: Literature evid	ence for modulators of mi	crotubule	assem	bly.	

→ A subset of chemicals with biological similarity to diniconazole are known to affect microtubules.

4603 P639

ORCiD 0000-0002-6155-9743 Nyffeler.Johanna@epa.gov

1. 49% of the tested chemicals were active at \leq 100 μ M

2. Multiple phenotypic profiles were observed, some were shared among many chemicals while others were specific to

3. Diniconazole induces a phenotypic profile different from structurally similar conazoles. Instead, diniconazole induces a profile similar to known disruptors of microtubules.