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Outline

* Tiered testing strategy using New Approach Methods (NAMs) to fill gaps in
environmental chemical safety data

* Workflow for transcriptomic profiling of chemical effects in vitro
e Data analysis tools for high-throughput transcriptomics (HTTr) data

* Validation of HTTr data & ongoing research



wEPA Chemical Safety Testing Strategy Rationale

Rationale: Too Many Chemicals, Too Little Data!
e 1,000s of chemicals used in USA for non-food/drug applications
e Many chemicals lack safety data for human health & ecological impacts

* Traditional toxicity testing is costly and slow
» 2-year rodent cancer bioassay costs over S1 million per substance

* Fast, flexible, cost-effective method needed to fill gaps in safety data

* New Approach Methods (NAMs) aim to provide toxicity data without the
use of animal testing (e.g. in vitro screening)




wEPA Tiered Chemical Safety Testing Strategy

( Tier 1: Broad coverage, high content assays \\ A
 Must be cost-effective enough to rapidly screen 1000s of chemicals
e e.g. Transcriptomics and/or cell imaging applied in vitro
e Acute exposure: 6 - 24 hours
* Multiple cell types with different metabolic profiles
\| ° Goals: Prioritize chemicals by bioactivity & potency for further testing J

, —

s|eatwayd Jo #

Tier 2: Targeted in vitro assays
* Goals: confirm bioactivity & potency of chemicals flagged for potential
safety issues

Tier 3: Organotypic assays, systems modeling, and more
* Goals: identify likely tissue, organ, or organism effect of chemical

|eatway) Jad 1507

See also: Thomas, et al. Toxicol Sci 2019



wEPA Outline

* Tiered testing strategy using New Approach Methods (NAMs) to fill gaps in
environmental chemical safety data

» Workflow for transcriptomic profiling of chemical effects in vitro
e Data analysis tools for high-throughput transcriptomics (HTTr) data

 Validation of HTTr data & ongoing research



< EPA Automated /n vitro Chemical Screening Strategy

Cryopreserved Cell
Cell Stocks Expansion

Dispensing Tes
Chemicals

| - '.’ (= _:- .-" 6 -

Cell Line Examples: BioTek

MultiFlo ™ FX
MCF-7 Breast cancer

Cell Plating

Hour Exposures

Cell imaging identifies
cytotoxic exposures

LabCyte Echo® 550

Targeted sequencing for
Liquid Handler

changes in gene regulation
(TempO-seq)

U-2 OS Bone cancer

HepaRG Liver metabolism

Adapted from Joshua Harrill 7



wEPA High-Throughput /n Vitro Chemical Screen Design

¥ 8 Concentrations

Test Chemicals: Chemical Dose Plate

1 Each 384 well test plate has:

"4 Log,, Spacing

_ Reference Chemicals * Cells from separately
& Vehicle Controls expanded batches

(Same on all plates) e Standardized dilution series

Cell Stocks

Cells evenly plated ﬂ L

for every chemical test
Chemical treatments ?ample’ dlspensed ol al:]
randomized to test plate independently randomized

Triplicate Test Plates manner

SETEy =t YU  Multiple quality control and
Quality Control !II! I||' 'E’I - ! - Pie 9 y
Samples g !|=.:§|.:'.=.;= reference chemicals to track
e P
- Reference [ 1 l==llll.i=i;=;:::i EE S = A>3y performa nes
Mixtures Bomn. gz s g iy

Bulk Lysate from Single
Exposure Experiment

> Sequencing/Imaging



< EPA

* Profiling of whole human
transcriptome (~21,000
protein-coding genes)

e Captures sufficient
biological signal at much
lower cost than
other methods

Do not need to purify RNA

Targeted RNA-seq Assay (TempO-seq)

-

3’ _RNA

Purified RNA or Lysates

~

Detector Oligo Annealing

Excess Oligo Removal

Detector Oligo Ligation

PCR with Tagged Primers

Sample Tag 2

Sample Tag 1

o——

v

Pool Library, Concentrate/Purify

v

Sequence

/

Yeakley, et al. PLoS ONE 2017



wEPA Outline

* Tiered testing strategy using New Approach Methods (NAMs) to fill gaps in
environmental chemical safety data

* Workflow for transcriptomic profiling of chemical effects in vitro

» Data analysis tools for high-throughput transcriptomics (HTTr) data

 Validation of HTTr data & ongoing research

13



wEPA HTTr Bioinformatics Pipeline

Count matrix
Samples

Raw Data Processing
10,000s of samples [ raw reads
FASTQ HISAT?2
Terabytes of data (FASTQ) (HISAT2)
Probe Manifest
Sample QC

Probes

Study Database

Extract data for
each chemical

Veh Incr
Ctrls Dose

Harrill, et al. Toxicol Sci 2021

Primary Goals:

* Speed up & automate compute
intensive steps

* Reproducible & open source

github.com/USEPA/httrpl_pilot
github.com/USEPA/CompTox-httrpathway

Currently exploring multiple
analysis strategies for estimating
& summarizing points of
departure (PODs)



< EPA

Count matrix
Samples

Raw Data Processing

Alignment
(HISAT2)

Raw Reads
(FASTQ)

Probe Manifest

Sample QC

Study Database

Extract data for

each chemical
Aggregation ‘

BMD
Express
Signature PODs
Signature
Conc-Response

Veh Incr

Ctrls Dose
|

Signature

Harrill, et al. Toxicol Sci 2021

HTTr Bioinformatics Pipeline

/Signature Concentratioh

Response Modeling

@ES@%@

github.com/USEPA/CompTox-httrpathway
(Richard Judson)

Primarily interested in transcriptional changes that:

 Are coordinated across known
pathways/gene sets

* Fit standard curve-models across all
concentrations

tcplfit2




Count data
per chemical

Veh Incr
Ctrls Dose
-

Estimate fold-
changes for
all genes

Signature Scoring

Catalog of gene set signatures with toxicological
relevance, annotated for known molecular targets

[

[

Compute signature
scores from all gene
expression changes

» Bioplanet (Huang, et al. Front Pharmacol 2019)
» CMap (Subramanian, et al. Cell 2017)

» DisGeNET (pinero, et al. Database 2015)

» MSIigDB (Liberzon, et al. Cell Syst 2015)

Single-Sample Gene Set Enrichment Analysis (ssGSEA)

(Barbie, et al. Nature 2009)

« Score coordinated responses at each concentration
» Test for multiple genes in a signature enriched among

most extreme fold-changes

~




Count data
per chemical

Veh Incr
Ctrls Dose

|

Signature Scoring

-~

Reference Chemical (Effect Size)

Correlation

Genistein (Weak) Sirolimus (Medium) Trichostatin A (Strong)
, 12
I
i 400
41 I 91 I
> : | 3004
= I |
5 e |
8. I 1| | 2004
I ; |
' ' 1 | 1004
I |
I |
0' I 0' I O'
0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00  0.00 0.25 0.50 0.75 1.00

Response Type |:| log2 Fold Change |:| Signature Scores /

» Differential expression analysis of 3 reference chemical exposures repeated 37 times (MCF-7)

e Computed distribution of correlations between each repeat analysis

» Signature scores have higher reproducibility than fold-changes, especially for weaker effect sizes



Count data
per chemical

Veh Incr
Ctrls Dose

|

Signature Scoring

Hit Call (0-1) indicates
confidence that signature is
[ concentration-responsive at all

Catalog of gene set signatures

[

Digitoxin
CMAP digoxin 5.2e—06 100 2866 100

10

- mthd AC50 Top ACC { Hitcall

ssGSEA

BMD
= ) expb 019 074 H0AC {J.%E
 — b
Use Benchmark Dose (BMD)
as Point of Departure \
o |
6 ©S
UL; o
Concentration-Response
Curve Fitting (tcplfit2) i
Sheffield, et al. Bioinformatics 2022 ' class: ATPase inhibitor
CRAN.R-project.org/package=tcplfit2 size: 69
method:expb
? E | Cutoff=0.11 '
I I I I
1e-03 1e-01 1e+01

conc (uM)


https://cran.r-project.org/package=tcplfit2

SEPA Outline

* Tiered testing strategy using New Approach Methods (NAMs) to fill gaps in
environmental chemical safety data

* Workflow for transcriptomic profiling of chemical effects in vitro

e Data analysis tools for high-throughput transcriptomics (HTTr) data

> Validation of HTTr data & ongoing research
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< EPA

MCEF-7
MCEF-7

MCEF-7
U-2 OS

HepaRG

BEAS-2B,
pHBEC

44 ToxCast chemicals

44 ToxCast chemicals

1,577 ToxCast chemicals

1,201 ToxCast chemicals
137 PFAS chemicals

1,201 ToxCast chemicals
137 PFAS chemicals

8 volatile chemicals

HTTr Studies at EPA

6h exposures

6, 12, 24h exposures
x 2 cell media types

6h exposures

24h exposures

24h exposures

Air-Liquid Interface (ALI),
2h exposures

Harrill, et al. Toxicol Sci 2021

manuscript in preparation

manuscript in preparation

manuscript & white paper in
preparation

manuscript & white paper in
preparation

Speen, et al. in review

22



EPA Global View of Bioactivity

Differential Expression per Chemical

Cell Type E3 MCF-7 B3 U20S EJ HepaRG « Compute # of Differentially Expressed Genes
(DEGSs) in response to each concentration of
10000 - | N ; each chemical
e ! : I | \ « Based on DESeq2 analysis
1000 : I 1 | * 10% False Discovery Rate (FDR)

I ] « Each boxplot shows distribution of DEG
| counts across all tested chemicals

100

1
|

# of DEGs (10% FDR) AtVBelow Conc

m - « Majority of chemicals inactive at lowest
AR [ |- L — [ concentration tested
R | - o
prr g= » Majority of chemicals perturb gene expression
| — at highest concentration tested
' H‘\ | | ‘ TIT (Tens to thousands of genes)
0.032 0.1 0.32 1 3.2 10 32 100

Chemical Concentration (uM)



wEPA Full HTTr Screen Results (MCF-7)

1001
* Performed conc-response analysis with full B
. ~ . @ %o
signature catalog on all ~¥1,500 chemicals oo s
: : : : | 588 e g 2%
* Filter to Active Signatures (Hit Call > 0.9) SR R ¥
* Majority of chemicals have >10 active signatures = L 4 ﬁsfmﬁ
=1 o L e
 Many chemicals have 100-1,000 active 3 * & gf@l
Signatures E 2 : ol #:f;:ztc:veSignatures
> o o
A i d SO : 1000
E 100 1 | _ ] 0.1 o 4;0 P @ =0
£ 1] 2
o ] : 100 1
gri i
"S5 0.011 o <, i
= o Jull st et Sepes
1 .*IIII 1':!':'1':”:”:' 0.001 < 0.1 1 10 100
# of Active Signatures 5t percentile POD (kM)

Adapted from Joshua Harrill



wEPA Full HTTr Screen Results (MCF-7)

1001
* Performed conc-response analysis with full
signature catalog on all ~¥1,500 chemicals j
* Filter to Active Signatures (Hit Call > 0.9) © T
* Majority of chemicals have >10 active signatures < |
3 ® .
* Many chemicals have 100-1,000 active 3 &%
Signatures E 2 : ol #:f;:ztc:veSignatures
. - . . o = ® 500
* Majority of active signatures are low potency ' d C;Q e =
(POD > 10uM) s ®
0.01:4 :2 Uﬂum“[mmmml
0.001 _ 0.01 0.1 1 10 100

5th percentile POD (uM)
Adapted from Joshua Harrill
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Effect Size & Direction

(Curve Top / Cutoff)

Molecular target associated w/ signature:

*  Random PG " RAR & ESH
" GR Other ATPase

Diethylstilbestrol dipropionate

Burst of non-specific
signature activity at
10-100uM

F
Ll ay Ty e

gt A .

Most potent signature
= | hits related to
Estrogen Receptor

0.001 0.61 0.1 1 16 100
Signature POD (uM)

Median POD (uM)

Full HTTr Screen Results (MCF-7)

1001
{joﬂ ZZO 340
‘e8¢ ¢° a
: QEO . 8
1 ) Zae &
’ - 2@
o §0. 570 v %
g z%"%--%‘ 5? &
¥ 24 48 Ep o
-zo . B4 8
O__q ° 4O
8 40 5;,_‘::}(:)53
1 & ot A
@ @ ‘8} e
Fl B 56
B Co2! 62(—%:].
i 43 E?
o ﬁ&ﬁ o * # of Active Signatures
® ® 250
# Q ® 500
& 4 ® w0
SO & 1000
0.11 & o 2 ® 0
40
o
5 100
£
o
& 50
B 5
0.01'1 ° g {ILUIHRRTR R
1 10 1001000
o # of Active Signatures
35
0.001 0.01 0.1 1 10 100

5th percentile POD (uM)
Adapted from Joshua Harrill



MCF-7 HTTr Signature POD (uM)

< EPA

1e+02

1e+00

Cladribine—> #

fe02

1e-02

HTTr vs ToxCast Targeted Assays

* Pilot study of 44 well-characterized

M : chemicals in MCF-7 cells, 6h exposure
": ¢ *z,f” (Harrill, et al. Toxicol Sci, 2021)
& o e/ .
.2 *. .. .~ *Compared HTTr-derived PODs to
S SR previous ToxCast targeted assay results
Te T (multiple cell types, assays, and
e exposure lengths)
o« ..t 2 (Paul-Friedman, et al. Toxicol Sci 2020)
hy To

 Signature-based PODs are highly
s concordant with ToxCast results for the
majority of test chemicals in pilot study

1e+00 1e+02
ToxCast POD (uM)



< EPA

MCF-7 HTTr Signature POD (uM)

1e+02

1e+00

fe02

Cladribine—> #

1e-02

HTTr vs ToxCast Targeted Assays

1e+00
ToxCast POD (uM)

* 6 chemicals with targets that have low/absent
expression in MCF-7 cells
e 3,5,3'-triiodothyronine (Thyroid Receptor)
e Cyproconazole (pan-CYP inhibitor)
e Butafenacil (pan-CYP inhibitor)
* Prochloraz (pan-CYP inhibitor)
* Imazalil (pan-CYP inhibitor)
* Propiconazole (pan-CYP inhibitor)

* 5 chemicals where most potent assays in
ToxCast do not match known target(s)

* Lovastatin
* Clofibrate
* Maneb

* Lactofen
* Vinclozolin

 Cladribine (2-chloro-2’-deoxyadenosine) is a
DNA synthesis inhibitor

=292 (Harrill, et al. Toxicol Sci, 2021)

29
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Comparing POD Analysis Methods

Gene-Centric Approaches\

« BMDExpress (NTP)
* tcplFit2 (CCTE)

e BIFROST (Unilever)

_/

Compare approaches across
multiple types of studies,
“best” method may be
context-dependent

< )

ngature Conc-Respong

tcplfit2

github.com/USEPA/CompTox-httrpathway

K (Richard Judson) /

s

Improved integration through HTTr pipeline & database development >




v EPA Connectivity-mapping with gene signatures

. . .‘ : : Transcriptomic
- Signature i—* Connectivity Measure Profile J .

s N
/ \
/ \
/ Positive No Negative \
| Connection J Connection J ConnectionJ \
I K T \
I —— v v M — \
I @ s = n e = = \
[ T s = n o = u
: o U, o N ] o u u |
' .HLA-DPBI p . . . . . . = l
.PPIAL = = = .
~— ° - S
— . ; o
3 "y
: 8 i
@ — i | | |
Bioactivity ::K‘j:” Dn o B o B . E Transcriptomic
Signatures @ H E ® E H E - Database
.THSDl : . . z . =
R 4 A A N—r’
. . . :- ---------------- : : »--
QengrahSEd gOnnthIVIty Possible matches between a ‘325
Toglkrt (gecco) signature and a profile L2FC

Imran Shah



Summary

* EPA/ORD has developed reliable and cost-efficient workflow for generating
HTTr data from thousands of chemicals across multiple cell lines

* Preliminary/pilot analysis demonstrates that overall results are concordant
with previous assays (ToxCast/HTS) and known chemical targets
Harrill, et al. Toxicol Sci 2021

* Ongoing research efforts focused on:
e Data generation in complementary cell models
* Methods to summarize signature-level/overall PODs from high-dimensional data
* Predictive models of MIEs/pathways relevant to toxicity
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wEPA TempO-seq Assay

Triplicate Test Plates

n -"'i| '__.|i =| 1. Cells lysed, RNA available for assay 3’ —NA ' 5’

2. Paired sequences that match /_/
nearby areas of each human gene Tag for ===~

RNA sequence added sequencing >equence 1 Sequence 2

3. Paired sequences hybridize to

target RNA when present in sample /_P04

4. If paired sequences bind, they are
connected into full probe sequence

5. RNA removed, PCR using tags to ————— —
amplify sequences, library of v ~
sequences pooled and read -

——————— —— —

Yeakley, et al. PLoS ONE 2017



wEPA HTTr Data Generation

Triplicate Test Plates

5. Library of sequences pooled L

_*_

3.." : and read ‘

Resulting Data: FATGAGGTGGTGGTGGATGAGAAGCCCTTCCTG
s . TATGAGGTGGTGGTGGATGAGAAGCCCTTCCTG
— - [ ] ! : F F
Millions of 50 nucleotide reads el et ol s gl
per sample FATGAGGTGGTGGTGGACGAGAAACCCTTCCTG
« 1,000 chemical screen generates FATGAGGTGOTGGTGGACGAGAAACCCTTCCTG
~ o~ FATGAGGTGGTGGTGGATGAGAAGCCCTTCCTG
27,000 samples = ~4 TB raw data FATGAGGTAGTGGTGGATGAGAAGCCCTTCCTG

End goal: Determine which chemicals, at what concentrations, show relevant biological responses

Bioinformatics Pipeline needed to rapidly & reproducibly:

Align sequence Perform Manage large- Estimate Identify
reads to probe sample-level scale study data changes in gene concentration-
set sequences guality control in database expression responsive genes

& pathways




SEPA . HTTr Quality Control (Q)

QC Failure Rates Across HT Tr Screens QC Issue Type (Acoustic dispenser logs identify

> . Liquid Handling < | problems with chemical handling
\.

. Cytotoxicity - : — : :
4% Cell imagining assays identify

. Assay Quality concentrations causing >50% cell
\death or cytotoxicity

\.

3%

~1-3% of samples removed
from further analysis

-
Bioinformatic QC checks remove:

* Low read depth samples

* High rate of alignment failure

 Samples with low gene coverage

* Samples with irregular count
distributions

2%

% of TempO-seq Samples

1%

. -

QC Standards  MCF-7 Cells U-2 OS Cells HepaRG Cells

Summary of data from screening >1,000 chemicals in 3 cell lines



Cell Viability

< EPA

Conditions causing
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wEPA QC Metrics: Read Depth

107

<
6

= 10
E ——————————————————————————————
O
8 10°
O
(1))
T

o ==

10°

A @ 3
\& &Q C\‘\O \\?}Q Q\%
%)
& o@‘bo ¢ <&

E’J:"_—‘ $ el ... «— Target Depth = 3M Reads

Depends on probe set, cell
type, attenuation

<+— Threshold = 10% of Target Depth

Reasons for low read depth:
e Cytotoxicity

 Sample degradation

* Low input

e Assay failure

More variability

- for cell lysates

than purified RNA



wEPA QC Metrics: Mapping Rate

100 * Each read mapped to known probe sequences

L ] i L] $ i L) .
- de * Only uniquely mapped reads used for analysis

S il <+— Threshold = 50% Mapping Rate

May depend on media/lysate
condition, cell type

% Mapped (FMR)

25

* N . .
e (b@Q\Q} & & & Reasons for I.ow mapping rate:
° o 2 2 * Cytotoxicity
3  Sample degradation
Type * Lowinput

e Assay failure



wEPA QC Metrics: Mapping Rate

All MCF-7 Samples * Replicate correlation drops
off when <50% of reads

Pairwise Correlation Between Replicate Samples

1.00 |
; i‘? ﬁ? mapped uniquely to probe
I @ v sequences
|
0.7h- |
|
| * Lower mapping rate leads to
: lower depth
0.50 - I
|
: * May also indicate sample
. : quality issues (e.g. RNA
| | degradation or incomplete
: cell lysis)
|
0.00 - !

001 0402 02:03 0304 0405 0506 0607 0708 0809 09
Fraction of Reads Mapped to Known Probes



wEPA QC Metrics: Transcriptome Coverage

Ncov. = # of probes with
at least 5 reads

. | |
T } :‘ Threshold = 5,000 Probes (MCF-7)

Based on “outer fence” principle (Tukey, 1976,
Re-evaluated on new cell types, probe sets,
and attenuation strategies

15000

Reasons for low coverage samples:

S < & o * Low read depth
3  Sample degradation
Type s

Low input
e Assay failure



wEPA QC Metrics: Signal Distribution

4000

* Nsigg, = # of probes capturing top 80%
of signal

 Low values = reads highly concentrated
among small number of probes

3000 ‘

T P
= I ;ﬂ
—— Threshold = 1,000 Probes (MCF-7)
1000 == === === m e ————— - ———— - g - <— Based on “outer fence” principle (Tukey, 1976)
Should be re-evaluated on new cell types,
0 probe sets, and attenuation strategies
E \© & N \©
o Qcofo“@ & Q\é\@“ \cofo@Q Reasons for low values:
° S «© « Sample degradation
Type * Low input

e Assay failure



< EPA
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QC Metrics: Signal Distribution

Reasons for high values:

Sample degradation
Low input

<— Threshold = 0.95

Based on “outer fence” principle (Tukey, 1976)
Should be re-evaluated on new cell types, probe
sets, and attenuation strategies

Gini coefficient = measure of inequality or
skewness in a distribution

High values = most reads coming from few
probes (Max 1: All reads from 1 probe)

Lower values = closer to uniform distribution of
reads across all probes (Min 0, not expected for
expression data)

Expect samples from same cell type to be similar



HTTr MCF-7 Pilot Analysis

O @ A o s 4 st i * Also calculated BPAC/PODs using NTP
R approach with BMDExpress?2
o 2= (NTP Research Report 5, 2018; Phillips, et al. 2019)
Fiares ——
———— * BPACy)px (©) tended to be higher and less
= concordant with ToxCast PODs
%._:‘—_r * Poor signal:noise at gene-level is likely cause
Ressione 2
sesion o
=i * We continue to use BMDEXxpress for
= o other transcriptomics applications and
D S o continue to explore this issue
o —— "y
1e-04 BP;;—;)iM) 1e+00 1e+02

(Harrill, et al. Toxicol Sci, 2021)



* Majority of differential

expression is weak (2-4x)

for most chemical

L2FC Type

HTTr MCF-7 Pilot Analysis

< EPA
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vEPA

Goal: Develop NAMs to characterize
non-specific environmental
chemicals that activate stress
response pathways (SRPs)

Approach: Characterize chemical
hazards using HTTr data to assess SRP
gene signature activity

Challenges: Cross-talk in signaling
networks makes it difficult to find
gene signatures of SRPs

Results: We have developed
consensus SRP signatures for
accurately classifying known stressors

Future: Use signatures to identify
cellular states involved in adaptive
stress responses and “tipping points”
that lead to adversity
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SEPA . ML Models for MIE Classification
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