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$EPA  Human & ecological populations are exposed to
thousands of chemicals in the environment —
which ones are highest priority?
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Risk-based prioritization is a function of both
hazard and exposure

mg/kg BW/day
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Dose with
potentially adverse
effect

Potential
exposure

Lower Medium Higher

[NRC 2007; Bell et al. 2018; Bessems et al. 2014]
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Traditional hazard data comes from studies in vivo,
one chemical at a time

[Observe adverse effects in each dose group
after days, weeks, months, or years of dosing]
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s New approach methodologies for hazard:
In vitro high-throughput screening (HTS) assays,
e.g. ToxCast/Tox21

Thousands of chemicals are screened in
concentration-response across hundreds of in vitro
assays for various kinds of biological activity (binding,
signaling, viability...) — now with transcriptomics!

[Schmidt 2009; Dix et al. 2007; Kavlock et al. 2018; Filer et
al., 2016; Franzosa et al. 2021]

AC10
ACB
ACC

ACS50

Data: For each chemical, in vitro concentrations
associated with bioactivity in each assay, if any

Response

All data are public:
http://comptox.epa.gov/dashboard/

https://www.epa.gov/chemical-research/exploring-toxcast-
- data-downloadable-data

Concentration



Convert in vitro concentration to equivalent “in vivo” POD
using toxicokinetic modeling

- ~ In vitro bioactive
Equivalent dose E i E i concentration —
in vivo assumed as body
- / _ concentration .
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Dose Distribution I 9 R W
[Tan et al. 2007; Metabolism i
Rotroff et al. 2010; .
Wetmore et al. 2015] \ Excretion /
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chemicals with minimal chemical-specific

data requirements

Wambaugh et al. (2015)
Pearce et al. (2017a)
Ring et al. (2017)

Linakis et al. (2020)

ireen et al. (2021)

=it . New approach methodologies for toxicokinetics:

High-throughput toxicokinetics (HTTK)

Generic physiologically-based TK (PBTK)
model: can be parameterized for many
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steady-state plasma concentration (C,) &
simple TK models where C,, is linear with dose

A

Concentration

of interest: ‘ Slope = C_, for 1 mg/kg/day
e.g. In vitro
bioactive @ ----- in httk R package:

concentration calc analytic css()

Steady-state Concentration (uM)

‘(____

Daily Dose (mg/kg/day)
— Equivalent dose Wetmore et al. (2012)




SEPA  Inter-individual variability in TK is modeled using a

nnnnnnnnnnnnnnnnnnnn correlated Monte Carlo approach based on CDC
NHANES

Sample population TK

parameters & calculate

resulting population Css-dose
| / aneS | k slope distribution

=T = Median Sensitivity

Ring et al.
2017

More Sensitive
(conc = lower dose) 7

________________ > Less Sensitive
) GRS R (conc = higher dose)

‘‘‘‘‘‘‘‘

Steady-state Concentration (uM)

Dose Rate (mg/kg/day)
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wrereo - HTTK models, data, & algorithms are freely available in R package httk
https://CRAN.R-project.org/package=httk

+ = *

R CRAN - Package hittk X

&« c 8 cran.r-project.org/web/packages/httk/index.html a +« O & o *

i Apps @ Absence Reguest % Travel Request For... B® REMD-HTTK (& Confluence W Bitbucket (8 CompTox Dashboard -4 EHP @ Change Password

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analyvsis of chemical toxicokinetics ("TK") as in Pearce et al (2017) <doi:10.18637/735.3079.104= Chemical-specific in vitro data have been obtained from relatively high
throughput experiments. Both physiclogically-based ("PBTK") and empirical (e g, one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently,
often using compiled (C-based) code. A Monte Carlo sampler 1s meluded for simulating biological variability (Ring et al | 2017 =doi:10.1016/j.envint 2017.06.004=) and measurement limitations. Calibrated methods are included
for predicting tissue:plasma partition coefficients and volume of distribution (Pg ation ("IVIVE") of

high throughput screening data (e.g., Tox21, ToxCast) to real-world exposures v
R package httk

Depends: R{=210)
Imports: deSeolve, msm, data.table. survey, mvtnorm, truncnorm. stat

Suggests: goplot?, knitr, rmarkdown, Rorsp. GGally, gplots, scales, Ed O p e n SO u rce tra n S pa re nt a n d pe e r_ lolorspace. cowplot,

gorepel, dplvr, forcats, smatr, gtools, gndExira
Published: 2020-03-02
Author: John Wambaugh [aut, cre], Robert Pearce [aut], C4q reVI ewe d too I S a n d d ata fo r h lgh 1. Misha Sipes
[ctb], Barbara Wetmore [cth], Woodrow Setzer [eth]

Maintainer: John-\‘\’ambaugh c:ﬁ':lmbaugl-l.john at epagovs t h ro ug h p u t tOXico ki n etics ( HTTK)

BugReports: hitps:/github.com TUSEPA CompTox-ExpeCast-hitk

License: GPL | o *  Available publicly for free statistical
URL: https:/'wurw.epa.gov/chemical-researchrapid-chemical-exp)

NeedsCompilation: ves

Citation: hﬂi: citation info SOftwa re R

Materials: MEWS

CRAN checks: i resuis *  Allows in vitro-in vivo extrapolation

poneicads: downloads 806/month (IVIVE) and physiologically-based

Reference manual: hitk.p

Vignettes: Frank_etal (2018); Creating IVIVE Figure (Fig, §) tOXiCOkinetiCS (PBTK)

=S/

Honda et al. (2019): Updated Armitage et al. (2014} Model

Lol Subted s 200 Fowis Gsgation. *  Human-specific TK data for 987 chemicals
- * Described in Pearce et al. (2017a)




So: We can map in vitro bioactive concentration to
equivalent “in vivo” PODy, (dose) using HTTK
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new approach methodologies for exposure
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"’EPA ExpoCast: Bayesian inference of external exposures from

internal biomonitoring data

(ﬁ. anes Map metabolites to

NHANES parent compounds

Infer median daily
intake of parent
compounds

. : (probabilistic)
urinary biomonitoring
of metabolites
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(Assuming

urinary output =
daily intake) T
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everything is at
steady-state and
—— . »  P3
urinary excretion
only, so that daily

Wambaugh et al., 2013, 2014
] Stanfield et al., 2021




sneen SEEM3: A consensus model for aggregate exposure

SEEM3 = Systematic Empirical Evaluation of Models, version 3
Ring et al. (2019)

SEEM3 is a multiple linear regression!

Train model on inferred Exposure Predictors:

exposures from NHANES ° * Predictions of HT exposure
biomonitoring data S models (USETox, RAIDAR,
T & | Residual error = FINE, SHEDS-HT...)
P1 —S 9 uncertainty e Chemical production
1 ) volume (U.S.)
Bayesian inference = fs * Existing EPA pesticide
Probabilistic estimates of o exposure assessments
intercept, slopes, and E . Presencg on .Stockholm
uncertainty j= Con\{entlon list of banned
_ persistent organic
Intercept = Slope = Weight of pollutants
Exposure when each predictor

v

Missing predictor data:

all predictors at
Impute mean

Exposure Predictors
] mean value (centered & scaled)

14 of 39



seenenn Bioactivity-exposure ratio (BER):
PODyav = NAM-predicted exposure

In vitro hazard

O NAMs - ®
EFE ; d
@ BER<1
Exposure ®
NAMs .
' = Daily ® ~
exposure rate BER =~ 1
(mg/kg/day)
] BER > 1

T Wetmore et al. (2015)
Paul Friedman et al. (2017)
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BER-based prioritization of 84 chemicals

Example

Population distributions
of equivalent dose for
10t percentile ToxCast

-
2 c O o
S X & 59X
Q T 8§22 g &
O + U = 4 ‘T
ts (-t Cnu
+ Q Q =
c o Q
o bt = 2 RN 0
-2 8 L o 3=z
N 5 Q Q oo 9
Am o Pame
2 |
>
s 2
o0
O
o O

g {11 1
: . (I . | _
S . . [ 1
. . =
o T
° 9 ® o |
£ 8 {11 I
2 E o L [ |
.WS ] . 1
G.W b b [ |
MM . . [ 1 ]
E Zz o{11 o |
Ty
- . ]
(a2} AN - o - AN ™ < Y] [(e} N~ [0} [} o
o o o o o o (@] o o o o o o —
+ + + + [ 1 1 1 1 [] 1 1 1 1
® o o ® o o © © © o o0 O O o
~ ~ ~ ~ hat ~ bt ~ ~ ~ ~ ~ ~ hat

Kep/By/6w ‘ainsodxa Jo asop ‘AInb3

biomonitoring data
Updated version of analysis from

Ring et al. (2017)




An even-more high-throughput application: BER prioritization
of 7104 chemicals based on HTTK IVIVE of ToxCast AC50s and
HT exposure predictions from SEEM3 model
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AAAAAA Case study: Is PODy,, health-protective vs.
traditional in vivo POD? (Paul Friedman et al. 2019)

In vivo PODs (mg/kg/day)

EPA - ToxValDB POD,,.4

5th pctile

Health Canada

NAM-based in vitro bioactive conc. (uLM)

ToxCast AC50s

ASTAR HIPPTox
EC10s
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traditional POD, ., (median —
. NAM
(most of the time) most-sensitive 5%)
Adapted from Figure 3, Paul Friedman et al. 2019 NAM-pred exposure ‘

|esiwayn

400/448 chemicals = 89% of the time,
I PODypp < POD, 44

8 7 6 -5 4 3 2 1 0 1 2 3 4

log10 mg/kg-bw/day
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When IDODNAI\/I > IDODtraditionaI,
specific chemical features are
more likely

Adapted from Figure 3, Paul Friedman et al. 2019
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chemical features associated with organophosphate /

pesticides and carbamates more likely
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BERs can be calculated to reflect different
levels of uncertainty/conservatism based on

A1.oo- I
0.751 BER=1 |
0.501 !
0.40 |
0.30- '
0.20 i
) |
= .
2 0.10 | _
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I.I': ‘ — BER,95 95th%-ile
_g ' — BER,50 50th%-ile
E — BER,50 95th%-ile
S5 I I 1 N A (s N (AN U = AN, O (O O O A I A R o
£
S More
0.01- T Less conservative
conservative BER BER
I.
1
5 4 3 =2 1 0 1 2 3 4 5 6 7 8 9 10

Bioactivity-to-Exposure Ratio (BER)

T Adapted from Figure 4, Paul Friedman et al. 2019




Conclusions

* Risk-based prioritization involves both hazard and exposure
* NAMs can help fill data gaps in both the hazard and the exposure components of risk

* In vitro bioactive concentrations can be converted to equivalent “in vivo” PODy,,, doses,
using high-throughput toxicokinetics (HTTK)

* POD,\ incorporates data-driven inter-individual TK variability via HTTK

* Exposure NAMs can rapidly predict median population aggregate exposures
* PODy,\ VS- exposure quantified using bioactivity-exposure ratio (BER)

* BER-based prioritization gives a useful starting point

* PODy\ is typically more conservative than traditional in vivo PODs

* BER-based approach allows flexible consideration of uncertainty

NAMis for hazard, exposure, and toxicokinetics provide a useful way
to rapidly prioritize chemicals
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