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Human & ecological populations are exposed to 
thousands of chemicals in the environment –
which ones are highest priority?
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Risk-based prioritization is a function of both 
hazard and exposure

[NRC 2007; Bell et al. 2018; Bessems et al. 2014]



Traditional hazard data comes from studies in vivo, 
one chemical at a time

[Observe adverse effects in each dose group 
after days, weeks, months, or years of dosing]

Point of Departure 
(POD): Dose where 
adverse effects start 
to occur more than in 
control group (roughly 
speaking)

(this is simulated example data)



New approach methodologies for hazard: 
In vitro high-throughput screening (HTS) assays, 
e.g. ToxCast/Tox21
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Data: For each chemical, in vitro concentrations 
associated with bioactivity in each assay, if any

All data are public:
http://comptox.epa.gov/dashboard/
https://www.epa.gov/chemical-research/exploring-toxcast-
data-downloadable-data

Thousands of chemicals are screened in 
concentration-response across hundreds of in vitro
assays for various kinds of biological activity (binding, 
signaling, viability…) – now with transcriptomics!

[Schmidt 2009; Dix et al. 2007; Kavlock et al. 2018; Filer et 
al., 2016; Franzosa et al. 2021]



Convert in vitro concentration to equivalent “in vivo” POD 
using toxicokinetic modeling

Equivalent dose 
in vivo

In vitro bioactive 
concentration –

assumed as body 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion
[Tan et al. 2007;
Rotroff et al. 2010; 
Wetmore et al. 2015]
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New approach methodologies for toxicokinetics:
High-throughput toxicokinetics (HTTK)

Generic physiologically-based TK (PBTK) 
model: can be parameterized for many 
chemicals with minimal chemical-specific 
data requirements
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In vitro measurements of the minimal chemical-
specific TK model parameters (hepatic clearance 
rate & plasma protein binding)+

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017a)

Ring et al. (2017)
Linakis et al. (2020)
Breen et al. (2021)

Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Rapid Equilibrium Dialysis (RED) 
Waters et al. (2008)



For high-throughput applications: focus on 
steady-state plasma concentration (Css) &
simple TK models where Css is linear with dose
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Daily Dose (mg/kg/day)0

Slope = Css for 1 mg/kg/day
Concentration 
of interest: 
e.g. in vitro
bioactive 
concentration

Equivalent dose

in httk R package: 
calc_analytic_css()

Wetmore et al. (2012)



Inter-individual variability in TK is modeled using a 
correlated Monte Carlo approach based on CDC 
NHANES
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Dose Rate (mg/kg/day)0

More Sensitive
(conc = lower dose)

Less Sensitive
(conc = higher dose)

Median Sensitivity

Sample population TK 
parameters & calculate 
resulting population Css-dose 
slope distribution

Ring et al. 
2017



HTTK models, data, & algorithms are freely available in R package httk

R package httk
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (HTTK)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific TK data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk



So: We can map in vitro bioactive concentration to 
equivalent “in vivo” PODNAM (dose) using HTTK

Concentration

Re
sp

on
se

Dose

Re
sp

on
se

C
on

ce
nt

ra
tio

n

Dose0

Note that this is like 
a data-driven UFH
(human TK 
variability)

PODNAM
AC50 (e.g.)

HTTK
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Risk is a function of both hazard and exposure –
new approach methodologies for exposure



ExpoCast: Bayesian inference of external exposures from 
internal biomonitoring data

Wambaugh et al., 2013, 2014
Stanfield et al., 2021

NHANES
urinary biomonitoring 

of metabolites

U1

U2

P1

P2

P3

P4

Map metabolites to 
parent compounds 
(probabilistic)

P1

P2

P3

P4

Infer median daily 
intake of parent 
compounds

(Assuming 
everything is at 
steady-state and 
urinary excretion 
only, so that daily 
urinary output = 
daily intake)



SEEM3: A consensus model for aggregate exposure
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Residual error = 
uncertainty
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Exposure Predictors
(centered & scaled)

Slope = Weight of 
each predictor

Intercept = 
Exposure when 
all predictors at 
mean value 

Train model on inferred 
exposures from NHANES 
biomonitoring data

Exposure Predictors:
• Predictions of HT exposure 

models (USETox, RAIDAR, 
FINE, SHEDS-HT…)

• Chemical production 
volume (U.S.)

• Existing EPA pesticide 
exposure assessments

• Presence on Stockholm 
Convention list of banned 
persistent organic 
pollutants

Missing predictor data: 
Impute mean

P1 =

SEEM3 is a multiple linear regression!

Bayesian inference = 
Probabilistic estimates of 
intercept, slopes, and 
uncertainty

SEEM3 = Systematic Empirical Evaluation of Models, version 3
Ring et al. (2019)



= PODNAM

Bioactivity-exposure ratio (BER): 
PODNAM ÷ NAM-predicted exposure

BER > 1

BER ≈ 1

BER < 1
C

ss
(µ

M
)

Daily Dose (mg/kg/day)0

x
HTTKIn vitro hazard

NAMs

Exposure 
NAMs

= Daily 
exposure rate 
(mg/kg/day)

Wetmore et al. (2015)
Paul Friedman et al. (2017)



Example: BER-based prioritization of 84 chemicals 
Population distributions 
of equivalent dose for 
10th percentile ToxCast 
AC50 (bottom point = 
most-sensitive 5%)

Population median 
aggregate exposures 
with 95% credible 
interval, inferred from 
NHANES urinary 
biomonitoring data

Updated version of analysis from 
Ring et al. (2017)

Bioactivity-exposure 
ratio (BER)



An even-more high-throughput application: BER prioritization 
of 7104 chemicals based on HTTK IVIVE of ToxCast AC50s and 
HT exposure predictions from SEEM3 model

1083 chemicals with BER < 1
(higher-priority)

6020 chemicals with BER > 1
(lower-priority)



Case study: Is PODNAM health-protective vs. 
traditional in vivo POD? (Paul Friedman et al. 2019)

PODNAM

PODtradEPA - ToxValDB

Health Canada

EFSA

ECHA 

In vivo PODs (mg/kg/day)

ToxCast AC50s

ASTAR HIPPTox
EC10s

NAM-based in vitro bioactive conc. (μM)

HTTK

5th pctile

5-50th pctile



PODNAM < PODtraditional
(most of the time)

19
400/448 chemicals = 89% of the time,
PODNAM < PODtrad

Adapted from Figure 3, Paul Friedman et al. 2019

PODtraditional

PODNAM (median –
most-sensitive 5%)

NAM-pred exposure



When PODNAM > PODtraditional,
specific chemical features are 
more likely

20

chemical features associated with organophosphate 
pesticides and carbamates more likely

Adapted from Figure 3, Paul Friedman et al. 2019

PODtraditional

PODNAM (median –
most-sensitive 5%)

NAM-pred exposure



BERs can be calculated to reflect different 
levels of uncertainty/conservatism based on 
use case

BER = 1

Less conservative 
BER

More 
conservative BER

Adapted from Figure 4, Paul Friedman et al. 2019



Conclusions
• Risk-based prioritization involves both hazard and exposure
• NAMs can help fill data gaps in both the hazard and the exposure components of risk
• In vitro bioactive concentrations can be converted to equivalent “in vivo” PODNAM doses, 

using high-throughput toxicokinetics (HTTK)
• PODNAM incorporates data-driven inter-individual TK variability via HTTK
• Exposure NAMs can rapidly predict median population aggregate exposures
• PODNAM vs. exposure quantified using bioactivity-exposure ratio (BER)
• BER-based prioritization gives a useful starting point
• PODNAM is typically more conservative than traditional in vivo PODs
• BER-based approach allows flexible consideration of uncertainty

NAMs for hazard, exposure, and toxicokinetics provide a useful way 
to rapidly prioritize chemicals 
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