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Conclusions and Next Steps

• Monitoring of chemical occurrence in various media is critical for understanding the 
mechanisms by which human and ecological receptors are exposed to exogenous 
chemicals.  These data can inform regulatory decisions and mitigation strategies. 

• Since monitoring studies are expensive, there are large gaps in occurrence data for the 
tens-of-thousands of chemicals in commerce. In addition, strategies are need to prioritize 
chemicals for measurement in different media.

• Here we present a suite of machine-learning models that integrate data from dozens of 
public monitoring sources to predict chemical occurrence in 27 different environmental and 
biological media. For each medium, classifier models were built to predict the probability of 
any given chemical being detected.

• Training data for models of media occurrence were obtained from EPA’s Multimedia Monitoring Database (available at 
https://doi.org/10.23645/epacomptox.17065024.v1). Chemicals in MMDB were harmonized to chemical identifiers and to 30 
harmonized media. Data sources in MMDB include public databases developed by the U.S. EPA, the National Atmospheric 
Deposition Program, the state of California, the European Commission, N.C. State University, the U.S. Food and Drug 
Administration, the International Council for the Exploration of the Sea, the U.S. Centers for Disease Control, the U.S. 
Department of Agriculture, and the U.S. Geological Service. 

• Classification models for occurrence in each medium were built using chemicals that were present (detected) and not 
present in MMDB. A chemical is considered not present if all its measurements were non-detects. Detect measurements 
are disproportionally represented in the MMDB. Thus, for many media, very few chemicals are “not present”. (See Table 1.)

• To address this lack of negative data, we built augmented models for some media using positive unlabeled (PU) learning.1
PU learning selects likely negative data from a library of unlabeled substances (those with no occurrence data).

• In the PU learning (Figure 2), 25 “weak learner” models were built using positive data and a subset of the unlabeled data 
and used to predict probability of occurrence (probability of being a positive) for all the other unlabeled data. The results
from these models are averaged together, and chemicals that on average have the lowest probability of being a positive are 
identified as the likely negatives. 

• These likely negatives were then used to train final augmented media models. In this study, unlabeled data were 23,339 
commercial chemicals selected from Toxic Substance Control Act chemicals, food-related chemicals, pesticide active 
ingredients, pharmaceuticals, and cosmetics from lists provided on the EPA CompTox Chemicals Dashboard 
(https://comptox.epa.gov/dashboard/). The number of likely negatives selected was relative to the number of positives for 
each medium, such that the ratio of negatives to positives was 10:1.

• Standard models (for media with sufficient negatives), weak learner models, and final augmented models were built using 
the method of random forests.2

Table 1: The number of chemicals present and not present in the MMDB for media.  
Media with five or fewer chemicals “not present” are highlighted in blue; these media 
required PU learning and augmented models.

Figure 2: Illustration of how positive unlabeled (PU) learning is used to identify 
negative data for the media models. In this study, 25 weak learner models were built.

Figure 4 (right): Out-of-bag error and AUROC for the final 
models for all media. Models built using the original data had low 
error and AUROC close to 1, indicating excellent ability of the 
models to discriminate positive and negative chemicals. 
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Monitoring of chemical occurrence in various media is critical for understanding the mechanisms by which human and ecological receptors 
are exposed to exogenous chemicals. Since monitoring studies are expensive, data have not been exhaustively collected for the tens-of-
thousands of chemicals in commerce. To fill this gap, predictive models can be used to anticipate chemical presence and inform prioritization 
for further study. Here we present a suite of random forest models which integrate data from dozens of public monitoring sources to predict 
chemical occurrence in 30 different environmental and biological media. For each medium, classifier models were built to predict the 
probability of any given chemical being detected in that medium. Training data for a robust classifier model must consist of examples both of 
chemicals that are and chemicals that are not present in the medium. However, the available training dataset disproportionately contains 
chemical detections; out of 30 media, 14 media had fewer than 5 true negative chemicals. To address this dearth of negative data, 
augmented models were built which use positive unlabeled learning to identify likely negative chemicals from an unlabeled data set (here the 
Toxic Substances Control Act active inventory). Likely negatives identified using the augmented models were then used to train final media 
models. Final 5-fold cross-validated models with a balanced accuracy of 75% could be built for 14 media. An initial validation of blood model 
with limited external data demonstrated an accuracy of 73%. Final versions of models for all media will be tested on identified external data 
sets to assess their ability to predict emerging environmental exposures. These models have the potential to inform the development of 1) 
workflows for environmental decision-making, and 2) methods for assessing unknown structures in non-targeted analyses of environmental 
and biological media. 

Figure 1: We developed random forest models for likely media occurrence by analyzing a database of chemicals previously measured in 
monitoring of various environmental and biological media. The monitoring dataset was used to train a suite of validated media-specific 
classification models which can be used to predict the probability of occurrence in a medium of any unknown chemical. Since negative 
data are lacking for many chemicals due to a reporting bias towards detections, we implemented positive unlabeled (PU) learning to 
identify likely negatives for some media. 

Our overall approach was to use available public monitoring data that has been harmonized to 
media and chemical identifier to train predictive machine learning random forest models for media 
occurrence. We employed strategies to address the lack of negative data for certain media.

Medium
# Chemicals 
Present

# Chemicals Not 
Present

Ambient air 297 41
Aquatic invertebrate 377 33
Aquatic vertebrates/mammals 135 7
Birds 129 2
Breast milk 66 0
Drinking water 54 208
Fish 390 22
Food product 126 0
Groundwater 677 313
Human (other tissues or fluids) 54 1
Human blood 
(whole/serum/plasma) 164 3
Indoor air 77 0
Indoor dust 150 9
Landfill leachate 49 151
Livestock/meat 35 0
Other ecological media 45 0
Raw agricultural commodity 81 1
Sediment 626 237
Skin wipes 34 0
Sludge 84 15
Soil 68 8
Surface water 1359 346
Terrestrial invertebrates/worms 46 0
Terrestrial vertebrates 99 15
Urine 188 1
Vegetation 39 9
Wastewater (influent, effluent) 343 487

• Model descriptors for chemicals included ToxPrint molecular 
substructures,3 high-level use classifications from EPA’s 
Chemicals and Products Database (CPDat)4, and EPA’s 
OPERA physical-chemical property predictions.5

• Model validation was performed using Y-randomization;6
model error was assessed using out-of-bag error and the area 
under the receiver operating characteristic curve (AUROC).7

• The chemical domain of applicability of each model was also 
assessed via standard methods comparing the distance of 
new chemicals to the chemical space of the training set.8

Positive and unlabeled substances 
were used to train “weak learner” 
models.

Weak learners identify likely 
negatives from the unlabeled data.

Actual positives and likely negatives 
were used to train the final, 
augmented model.

• The PU learning successfully identified likely negatives for media without negative data (see example in Figure 3).
• Based on y-randomization validation, we could build valid prediction models for 14 media using standard models 

and 13 media using PU learning and augmented models (Figure 4). 

• We could build successful standard and augmented models for predicting occurrence 27 environmental and 
biological  media.

• We will perform external validation for models for which outside monitoring datasets can be identified. We will 
also incorporate available data from new non-targeted studies and investigate the feasibility of building machine-
learning regression models that consider the quantitative frequency with which substances are detected in 
MMDB.

• Predictions for all 700,000+ structures in the EPA Computational Toxicology dashboard for all 27 media will  be 
generated. These predictions may be incorporated into chemical decision-making workflows, e.g., prioritization 
of emerging chemicals of concern in drinking water and biosolids.

• These media occurrence models will also have utility in guiding structured literature searches and prioritizing 
chemicals for new monitoring studies.

• In an initial case study, we used the final model to 
predict chemicals likely to occur in drinking water 
by predicting occurrence for over 700,000 
structures in EPA’s DSSTox database.9 Known 
uses for these chemicals obtained from CPDat 
and CompTox Dashboard lists are summarized in 
Table 2.
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Figure 3 (above): Performance of the weak learner models for 
identifying likely negatives from unlabeled substances for blood. 
The 1475 substances used to build the final augmented model 
for blood had a 95% probability of being negative.
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Original data
Y-randomized

Sector of Use Number of Chemicals
Pharmaceutical Use Only 60
Pesticide Active Use Only 6
Consumer Use Only 29
Industrial Use Only 123
Consumer and Industrial Use Only 41
Multiple Uses 31

Table 2: Chemicals with known uses that were predicted to occur in drinking water 
(probability > 0.50). The total counts of chemicals that were within domain and positively 
predicted are likely influenced by the chemical space of the training set for the media. 

Probability of an unlabeled substance being negative 
(1-probability of being positive in weak learner models)

Weak Learner Results for Medium “Human Blood”
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