

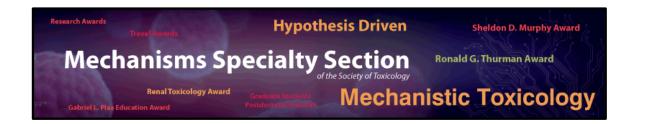
Applications of Single-Cell Profiling Methods to Enhance Mechanistic Understanding of Toxicological Responses

Society of Toxicology Symposium David Gallegos, U.S. EPA, Chair Kelly Bakulski, University of Michigan, Co-Chair March 30, 2022

Creating a Safer and Healthier World by Advancing the Science and Increasing the Impact of Toxicology

Center for Computational Toxicology and Exposure

Session Introduction: Advances and Technical Considerations in Single-Cell Profiling for Use in Mechanistic Toxicology


Creating a Safer and Healthier World by Advancing the Science and Increasing the Impact of Toxicology

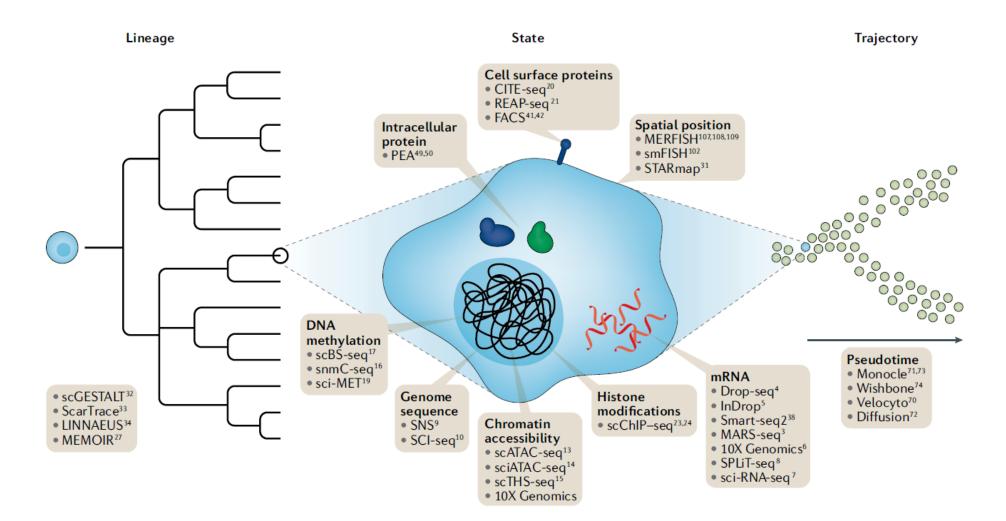
Center for Computational Toxicology and Exposure

Thanks to our sponsoring specialty sessions

Creating a Safer and Healthier World by Advancing the Science and Increasing the Impact of Toxicology

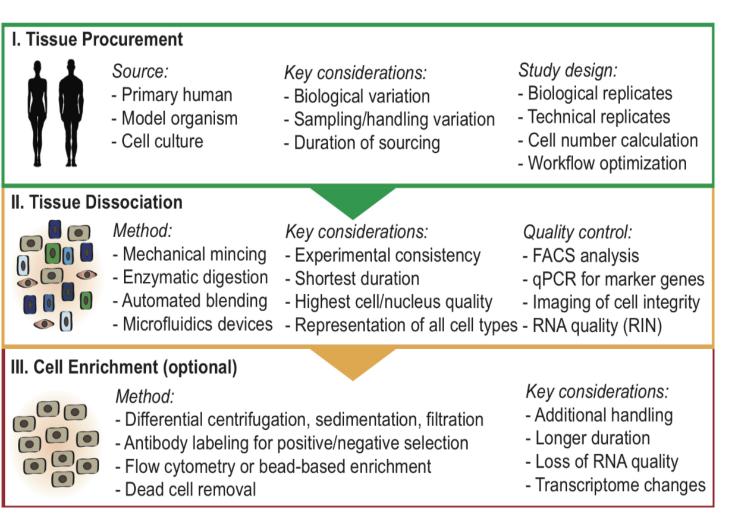
Disclaimer: This presentation does not represent U.S. EPA policy or endorsement

SINGLE-CELL SEQUENCING CONCEPTUAL UTILITY

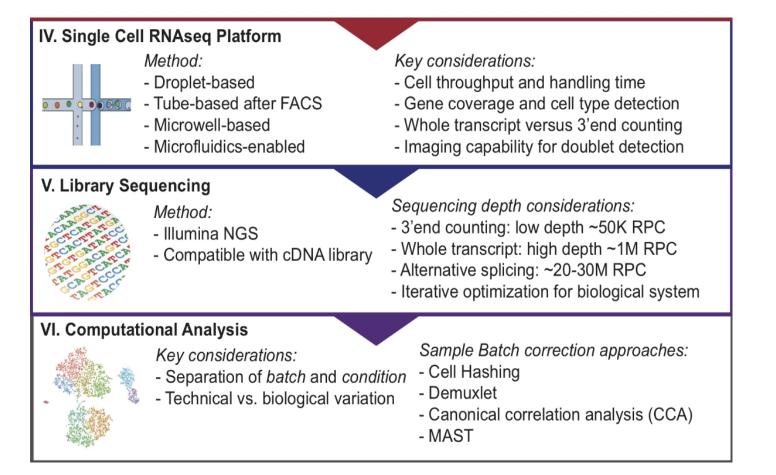


Michael J T Stubbington, Tapio Lönnberg, Valentina Proserpio, Simon Clare, Anneliese O Speak, Gordon

🛚 Dougan & Sarah A Teichmann 🗠


```
Nature Methods13, 329–332 (2016)Cite this articleEliezer M. Van Allen, <sup>1,2,3</sup> Monica Bertagnolli, <sup>12,13</sup> Peter K. Sorger, <sup>8,10,14</sup>Ryan J. Sullivan, <sup>15</sup> Keith T. Flaherty, <sup>15</sup> Dennie T. Frederick, <sup>15</sup> Judit Jané-Valbuena, <sup>1</sup>Charles H. Yoon, <sup>12,13</sup>† Orit Rozenblatt-Rosen, <sup>1</sup>† Alex K. Shalek, <sup>1,4,5,6,11,16</sup>†Aviv Regev, <sup>1,17,18</sup>†‡ Levi A. Garraway<sup>1,2,3,14</sup>†‡
```

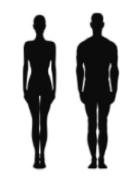
RAPID EXPANSION IN SINGLE CELL PROFILING



Stuart and Satija, Nature Reviews Genetics, 2019

PRINCIPLES AND STEPS OF SINGLE-CELL SEQ WORKFLOW

PRINCIPLES AND STEPS OF SINGLE-CELL RNA-SEQ WORKFLOW



TISSUE/SAMPLE PROCUREMENT

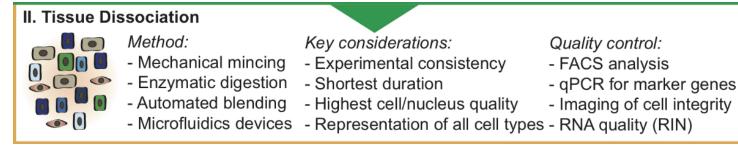
Difficulties in Single Cell Genomics:

Sensitive Preparations Preparation/Isolation Artifacts High Technical Variability and Noise Substantial Dropout/ Zero Counts

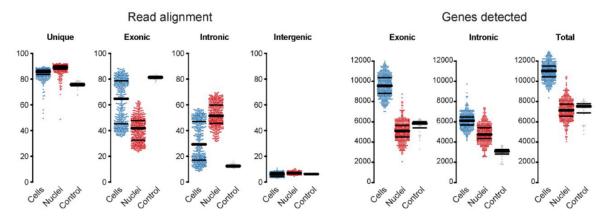
I. Tissue Procurement

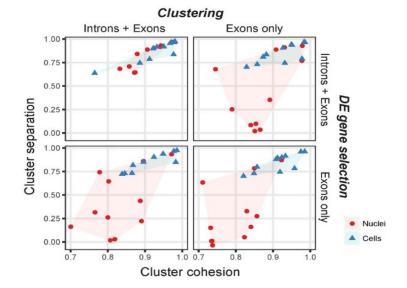
Source:

- Primary human
- Model organism
- Cell culture


Key considerations:

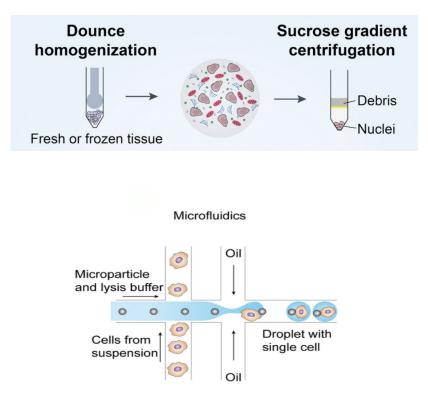
- Biological variation
- Sampling/handling variation
- Duration of sourcing


Study design:

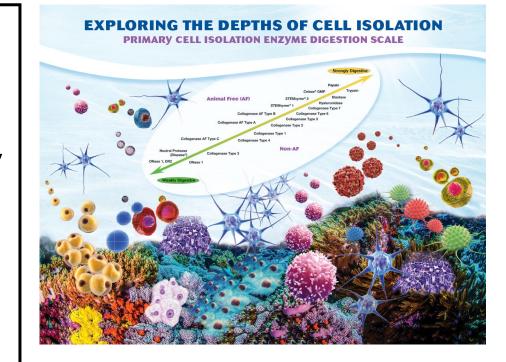

- Biological replicates
- Technical replicates
- Cell number calculation
- Workflow optimization

SINGLE CELLS VS. SINGLE NUCLEI

- Cell Type/State and Harvest Limitations
- Frozen/Archived/Post-Mortem Tissue
- Total Detectable Transcripts
- Intronic Sequence Utility
- Nuclear Sequence Proportion
- Transcript Types and Differential Enrichment (ncRNA)



Bakken et al, PLOS One, 2018

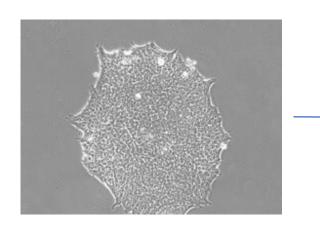

CELL AND NUCLEUS DISSOCIATION

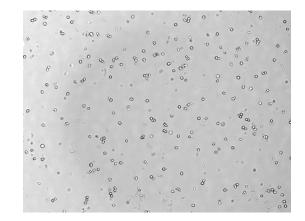
II. Tissue Dissociation Method: Key considerations: Quality control: - Mechanical mincing - Experimental consistency - FACS analysis Enzymatic digestion - Shortest duration - qPCR for marker genes - Automated blending - Highest cell/nucleus quality - Imaging of cell integrity - Microfluidics devices - Representation of all cell types - RNA quality (RIN)

- Tissue Dissection 1)
- 2) Mechanical Mincing
- *Enzymatic/proteoly* 3) tic (ECM) digestion
- Mechanical 4) Agitation
- 5) Optional Enrichment

Hu et al, Molecular Cell, 2017 Hwang et al, Experimental & Molecular Medicine, 2018

CELL AND NUCLEUS DISSOCIATION

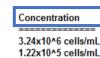

II. Tissue Dissociation Method:


- Key considerations:
- Experimental consistency - Mechanical mincing
- Enzymatic digestion Shortest duration
- Automated blending Highest cell/nucleus quality
- Imaging of cell integrity - Microfluidics devices - Representation of all cell types - RNA quality (RIN)

Quality control:

- FACS analysis

- gPCR for marker genes



Results:

Mean Diameter 18.1 micron 11.9 micron

Suspension Buffer Options

Basic: 1XPBS +0.04% BSA

Enhanced for Transcript Stasis: 1XPBS +0.04% BSA +100 mM D-AP5, 5 mg ml⁻¹ of actinomycin D, 20 mM Triptolide, 10 mg ml⁻¹ of anisomycin

Enhanced for Cell Suspension and Separation: 1X PBS + 0.6% BSA + 15% Optiprep Density Gradient Medium

Other Possible Reagents and Changes: 1 nM tetrodotoxin citrate, Kyneurinic Acid, Itraconazole

Key Considerations:

Viscosity

Pausing

Downstream Platforms Transcriptional/Translational Minimizing Processing Artifacts Cell Clumping

CELL AND NUCLEUS DISSOCIATION

II. 1155UC

II. Tissue DissociationKey considerations:Quality control:Method:Key considerations:Quality control:Mechanical mincing- Experimental consistency- FACS analysis

- Enzymatic digestion Shortest duration
- Automated blending Highest cell/nucleus quality
 - nest cell/nucleus quality Imaging of cell integrity
- Microfluidics devices Representation of all cell types RNA quality (RIN)

Tissue Tables (references, grouped by tissue type and species)

	Adipose/Fat	Adrenal	Bone	Brain	
hington « Corporates	Cartilage	Colon	Endothelial	Epithelial	
	Eye	Heart	Intestine	Kidney	
	Liver	Lung	Lymph nodes	Mammary	
	Miscellaneous	Muscle	Neural	Pancreas	http
Kin T	Parotid	Pituitary	Prostate	Reproductive	bioc
	Scales	Skin	Spleen	Stem	
Cor asso	Thymus	Thyroid/Parathyroid	Tonsil	Tumor	

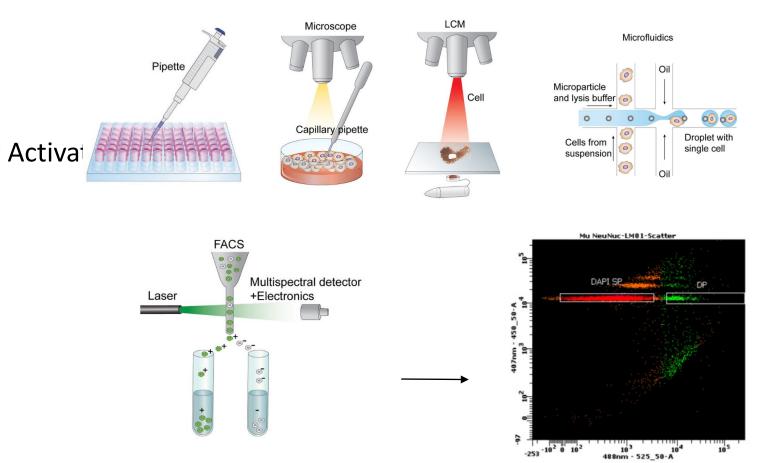
https://www.worthingtonbiochem.com/tissuedissociation/

- qPCR for marker genes

Brain			
	1	10	n

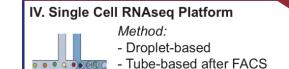
Worthin

Brain					Didini Didini
Species	Species Detail	Cell(s)	Enzyme(s)	Medium	Reference
Human	Human	Microglia	Collagenase Type 1: 300 u/ml Trypsin: 0.125%	DMEM	Mizee, M., Miedema, S., van der Poel, M., Adelia, S., van Strien, M., Melief, J., Smolders, J., Hendrickx, D., Heutinck, K., Hamann, J. and Huitinga, I.: Isolation of Primary Microglia from the Human Post-Mortem Brain: Effects of Ante- and Post- Mortem Variables., Acta Neuropathol 5, 16, 2017 (11604)
	Human, adult	Neuronal	Papain: 20 u/ml Neurobasal Lucas, T., O'Rourke, D. and Stefanik, D.: 1		Spaethling, J., Na, Y., Lee, J., Ulyanova, A., Baltuch, G., Bell, T., Brem, S., Chen, H., Dueck, H., Fisher, S., Garcia, M., Khaladkar, M., Kung, D., Lucas, T., O'Rourke, D. and Stefanik, D.: Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics., Cell Rep 18, 791-803, 2017 (11673)
	Human, fetal and mature	Astrocytes and neurons	Papain: 7.5-20 u/ml	RPMI	Zhang, Y., Sloan, S., Clarke, L., Caneda, C., Plaza, C., Blumenthal, P., Vogel, H., Steinberg, G., Edwards, M., Li, G., Duncan, J., Cheshier, S., Shuer, L., Chang, E., Grant, G., Gephart, M. and Barres, B.: Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse., <i>Neuron 89</i> , 37-53, 2016 (<i>11490</i>)


CELL ENRICHMENT AND ISOLATION

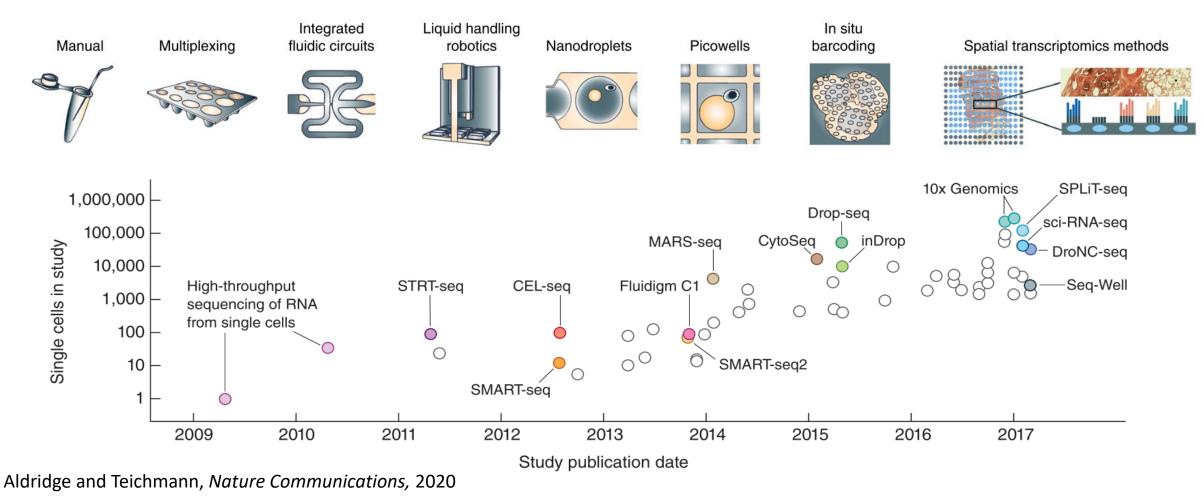
- Limiting Dilution
- Micromanipulation
- Differential Centrifugation
 - Debris Removal and Cell-Size Separation
- Flow Cytometry/Fluorescent Activation Sorting (FACS)
 - Debris Removal
 - Cell-Type Targeting
 - Doublet/Multiplet Filtering
- Immunoprecipitation (IP)
 - Cell-Type Targeting
- Concern: Time
- Goals:
 - Increase Purity/Viability
 - Decrease Debris
 - Target Specific Cell/Nuclei Populations

III. Cell Enrichment (optional)


Method:

- Differential centrifugation, sedimentation, filtration
- Antibody labeling for positive/negative selection
- Flow cytometry or bead-based enrichment
 Dead cell removal
- Key considerations:
- Additional handling
- Longer duration
- Loss of RNA quality
- Transcriptome changes

Hwang et al, *Experimental & Molecular Medicine*, 2018

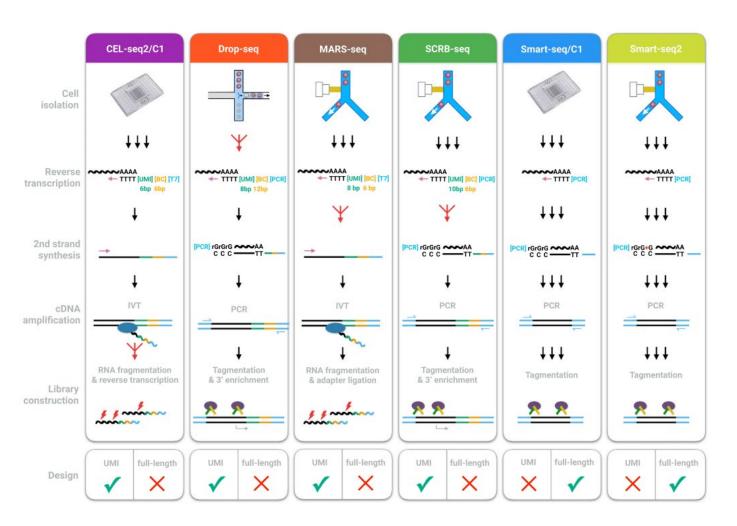

SINGLE-CELL RNA-SEQ PLATFORMS

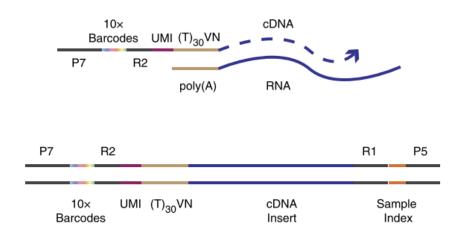
- Microwell-based

- Microfluidics-enabled

- Key considerations:
- Cell throughput and handling time
- Gene coverage and cell type detection
- Whole transcript versus 3'end counting
- Imaging capability for doublet detection

SC-RNASEQ LIBRARY PRINCIPLES


- Illumina NGS


- Compatible with cDNA library

Sequencing depth considerations:

- 3'end counting: low depth ~50K RPC
- Whole transcript: high depth ~1M RPC
- Alternative splicing: ~20-30M RPC
- Iterative optimization for biological system

Ziegenhain et al, *Molecular Cell*, 2017 Zheng et al, *Nature Communications*, 2017

SINGLE-CELL RNA-SEQ PLATFORMS

3' (and 5') End Modern Examples: CEL-seq2, MARS-seq, Drop-seq, InDrop, 10X Chromium, SPLiT-seq, Quartz-Seq2, sci-RNA-seq

Features: Higher-throughput, higher scalability, lower cost per cell, require lower sequencing depth

Important Controls: Unique Molecular Identifiers (UMIs)

IV. Single Cell RNAseq Platform

Method:

- Droplet-based

- Microwell-based

- Tube-based after FACS

- Microfluidics-enabled

Full-Length Transcript

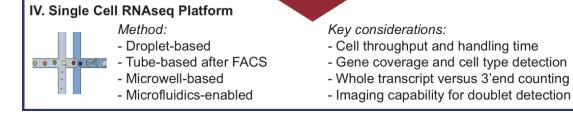
Key considerations:

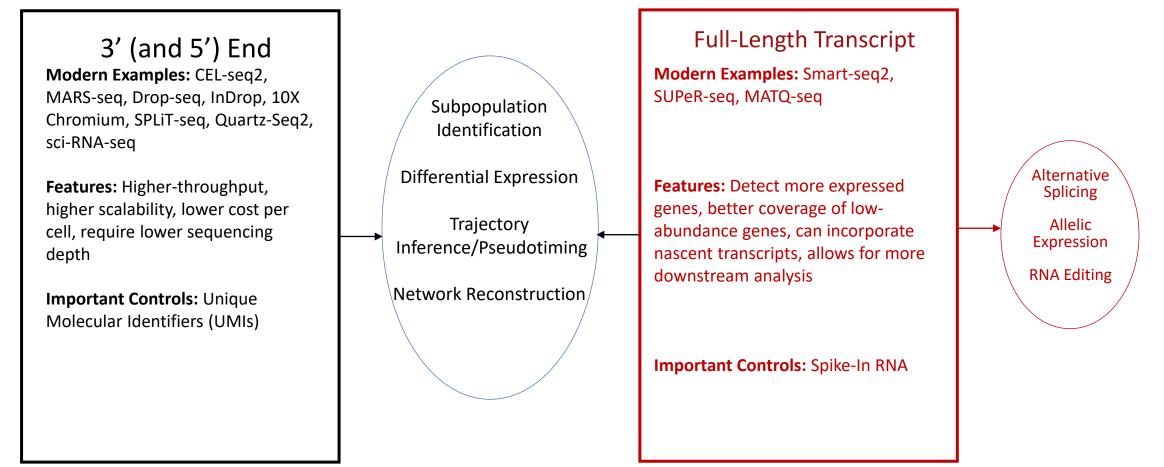
- Cell throughput and handling time

- Gene coverage and cell type detection

- Whole transcript versus 3'end counting

- Imaging capability for doublet detection

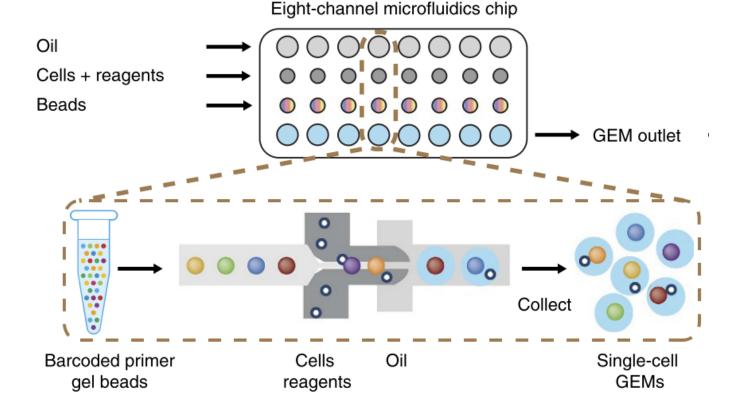

Modern Examples: Smart-seq2, SUPeR-seq, MATQ-seq


Features: Detect more expressed genes, better coverage of lowabundance genes, can incorporate nascent transcripts, allows for more downstream analysis

Important Controls: Spike-In RNA

Ding et al, Nature Biotechnology, 2020

SINGLE-CELL RNA-SEQ PLATFORMS



DROPLET-BASED PLATFORMS

- Reaction Specificity
- Poisson Inclusion
- Ambient RNA correction

Zheng et al, Nature Communications, 2017

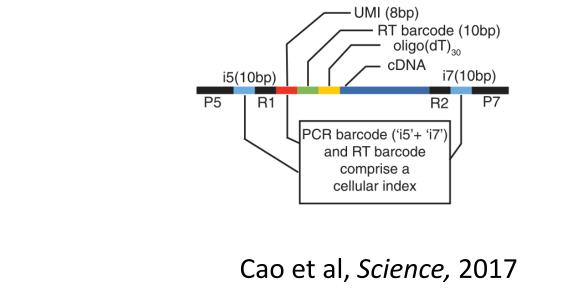
COMBINATORIAL INDEXING PLATFORMS

Pool & sort

2nd strand synthesis, tagmentation,

& PCR (2nd barcode)

0000


00000000

000000

00

Pool amplicons & deep sequence to generate single cell 3' digital gene expression profiles

- **Highly Scalable**
- Simplified Internal Multiplexing
- Maximizes Condition Inclusion
- **Batch Combination**

in situ RT with barcoded primers (1st barcode)

00000000000

AAAAA,

AAAAA

AAAAA

00 00.00000

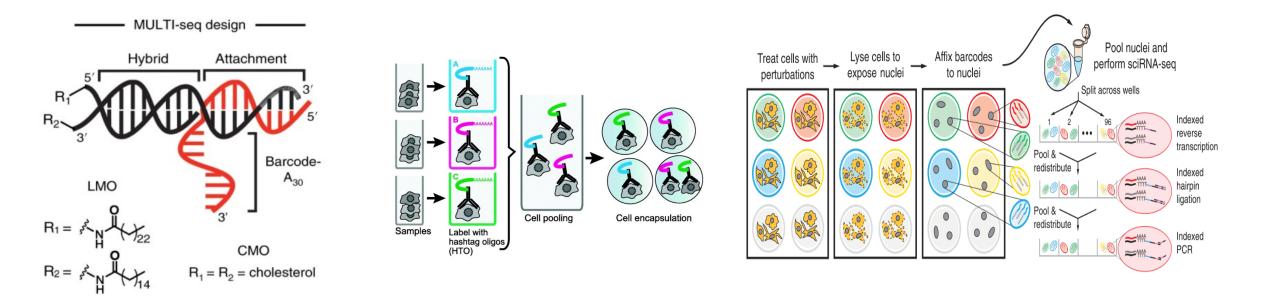
AAAAA

AAAAA

AAAAA

Distribute to

x-well plate(s)


AAAAA

Methanol fixed

cells or

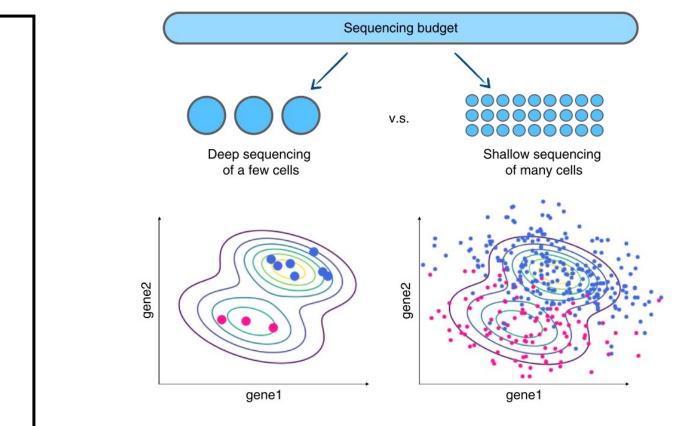
extracted nuclei

PLATFORM CONSIDERATIONS: STRATEGIC MULTIPLEXING ADVANCES

Multi-Seq McGinnis et al, Nature Methods, 2019 **CITE-Seq/Cell Hashing** Stoeckius et al, *Genome Biology*, 2019 **Sci-Plex** Srivatsan et al, *Science*, 2020

SEQUENCING DEPTH CONSIDERATIONS

General Benchmarks:

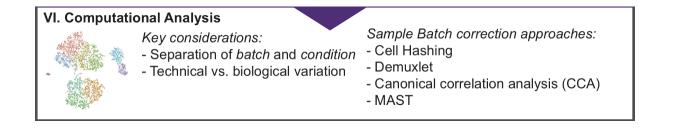

Method:

- Illumina NGS

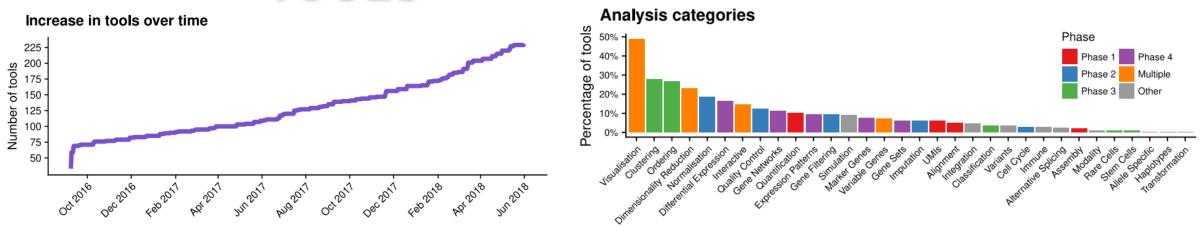
- Compatible with cDNA library

Sequencing depth considerations:

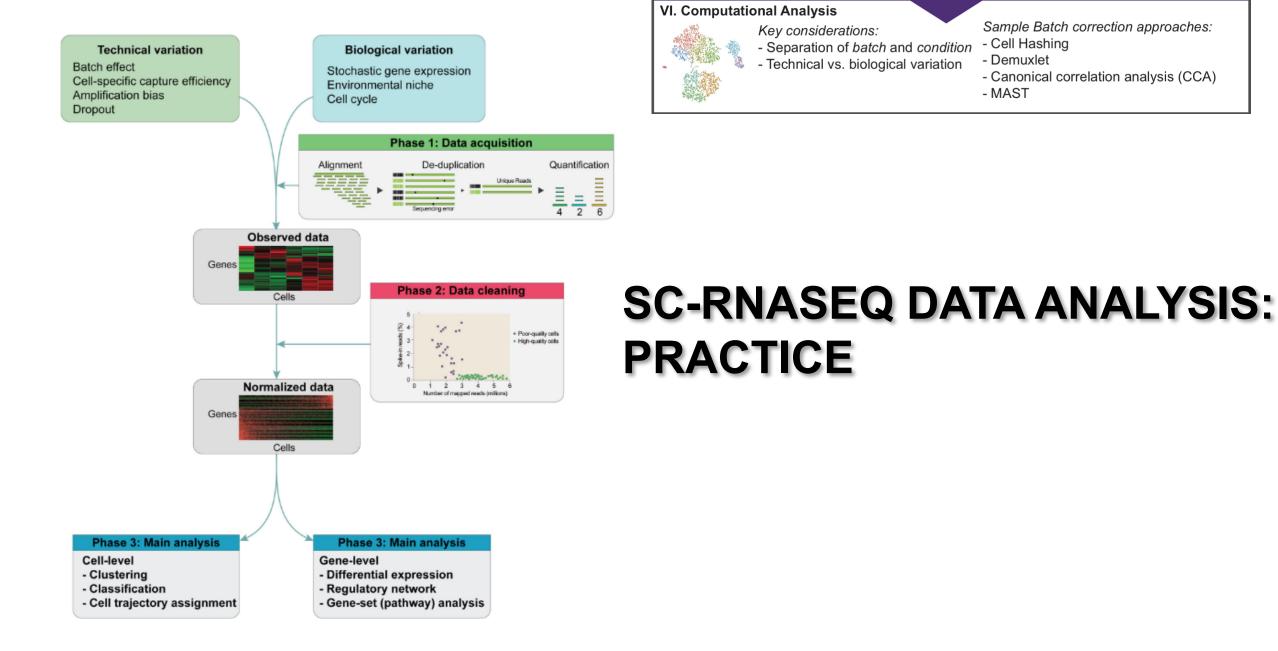
- 3'end counting: low depth ~50K RPC
- Whole transcript: high depth ~1M RPC
- Alternative splicing: ~20-30M RPC
- Iterative optimization for biological system



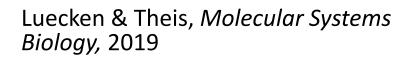
Zhang et al, Nature Communications, 2020


Full-length Transcript: >1x10⁶ reads per cell Min: 5x10⁴ reads per cell

3' End Sequencing: >2x10⁴ reads per cell Min: 1x10⁴ reads per cell


Alternative Splicing: >15x10⁶ reads per cell

SC-RNASEQ DATA ANALYSIS: TOOLS

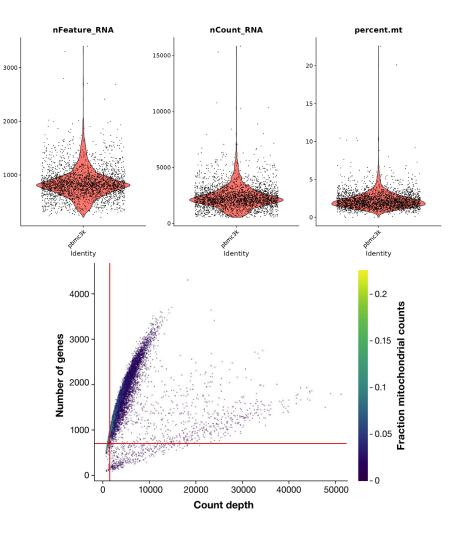


Zappia et al, PLOS Computational Biology, 2018

PRE- PROCESSING: QUALITY CONTROL AND COVARIATES

- Raw data quality and Demultiplexing
- Counts per Barcode (Cell)
- Genes per Barcode (Cell)
- Fraction of Mitochondrial Reads
- Doublet Detection
- Multi-Variate Assessment
 - Permissive vs Conservative
 - Revisiting and Sample Differences

VI. Computational Analysis


- Key considerations:
- Separation of batch and condition
- Technical vs. biological variation
- Canonical correlation analysis (CCA)

Sample Batch correction approaches:

- MAST

- Cell Hashing

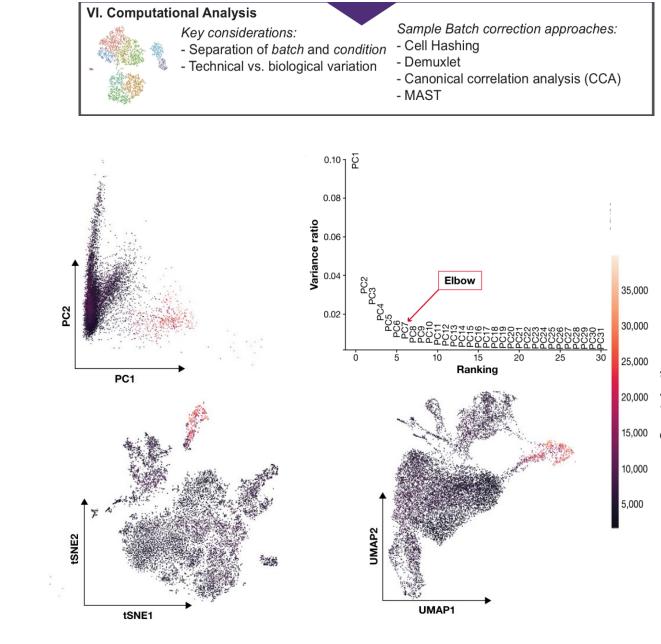
- Demuxlet

PRE-PROCESSING: **NORMALIZATION, SCALING** AND FEATURE DETECTION

- Critical to obtaining relative gene expression between cells
- Account for variability in count depth and gene dropout
- Within Sample Normalization
 - CPM/C Normalization and scran
 - TPM full length vs non
 - Non-Linear Normalization •
 - Log transformation
- **Scaling Mean and Variance**
- **Effect Corrections**
 - Biological e.g. Cell Cycle
 - Technical e.g. Batch, Imputation

- Separation of batch and condition
- Demuxlet - Technical vs. biological variation
 - Canonical correlation analysis (CCA)

Sample Batch correction approaches:


- Cell Hashing

CCA Seurat Basa ---- L1-Luminal --- L2-Luminal Ind4 Ind5 Ind6 Ind7

Luecken & Theis, Molecular Systems Biology, 2019 Nguyen et al, Frontiers in Cell and Developmental Biology, 2018

DIMENSIONALITY REDUCTION AND VISUALIZATION

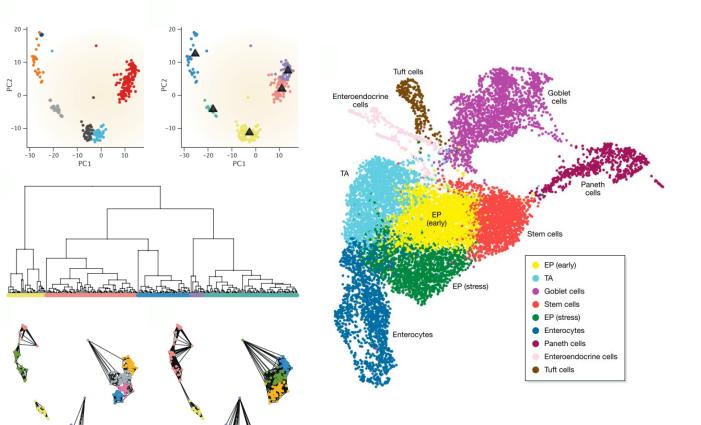
- Unsupervised Feature Detection
 - Highest Variable Genes (Seurat FVG)
 - Spike-In Based (BASiCS)
 - Dropout Based (M3Drop)
- Dimensionality Reduction and Visualization
 - Principal Component Analysis (PCA)
 - Latent Semantic and Jaccard
 - T-Distributed Stochastic Neighbor Embedding (t-SNE)
 - Uniform Approximation and Projection (UMAP)
 - Visualization vs Summarization

Luecken & Theis, Molecular Systems Biology, 2019

CELL CLUSTERING

VI. Computational Analysis

Key considerations:


- Separation of batch and condition

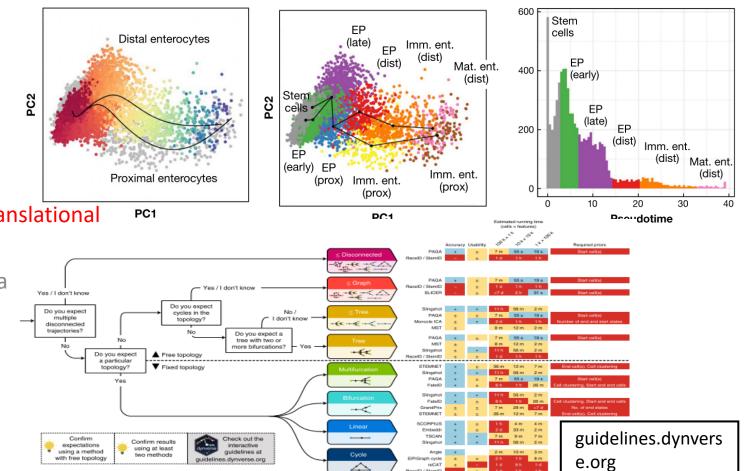
- Technical vs. biological variation

Sample Batch correction approaches:

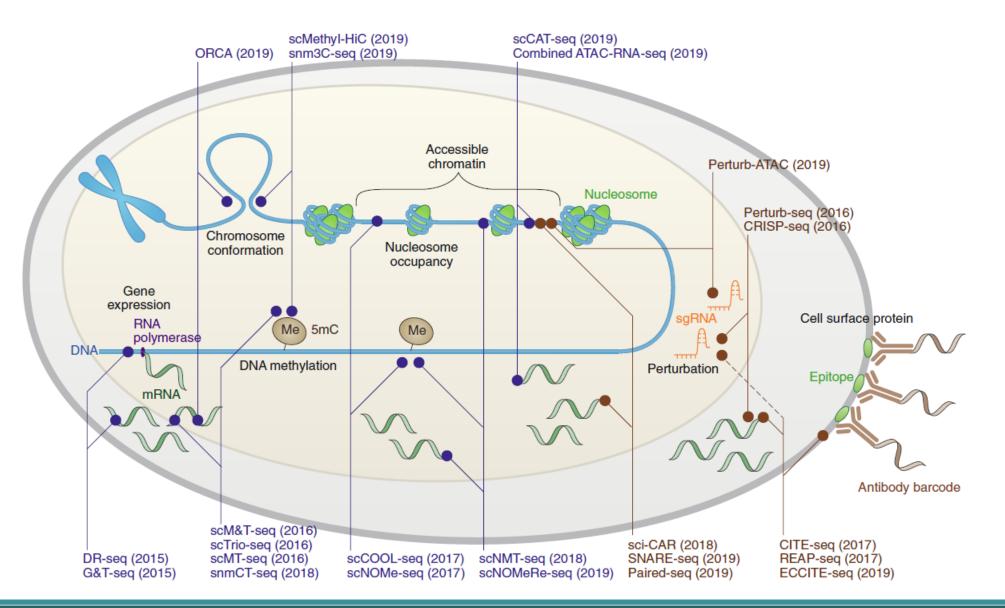
- Cell Hashing
- Demuxlet
- Canonical correlation analysis (CCA)
- MAST

Clustering and Community Detection

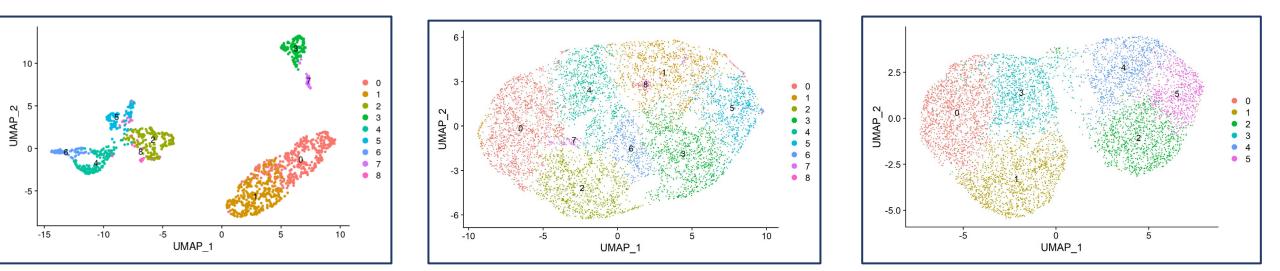
- K-means
- Hierarchical
- K-Nearest Neighbor
- Sub-clustering
- "Marker" Genes and "Cell Types"
 - Secondary methods
- Atlases and Databases
 - Human Cell Atlas


Kiselev, Andrews, & Hemberg Nature Reviews Genetics, 2019

DIFFERENTIAL EXPRESSION AND TRAJECTORY INFERENCE


- Differential Expression
 - Bulk Tools vs SC Tools
 - MAST
- Trajectory Transcriptional/Translational Inference/Pseudotiming
 - Differentiation and Progressive Cell Cha
 - Linear Minimum variability
 - Topological Assumptions
 - Multiple Confirmation and Further Perturbation

Luecken & Theis, *Molecular Systems Biology*, 2019 Saelens, *Nature Biotechnology*, 2019



MULTI-MODAL DATA ADVANCEMENTS

SINGLE-CELL TOXICOLOGICAL PROFILING AT EPA

Neurons Developmental Neurotoxicity Dr. Tim Shafer Dr. Brian Chorley HepaRG Cell Lines Hepatic Toxicity Gene Networks Dr. Imran Shah Dr. Brian Chorley

Human Embryonic Stem Cells Predictive Toxicology Using Stem Cell Models Dr. Sid Hunter

Applications of Single-Cell Profiling Methods to Enhance Mechanistic Understanding of Toxicological Responses

Dr. Kelly Bakulski, University of Michigan

Dr. Britton Goodale, Dartmouth College

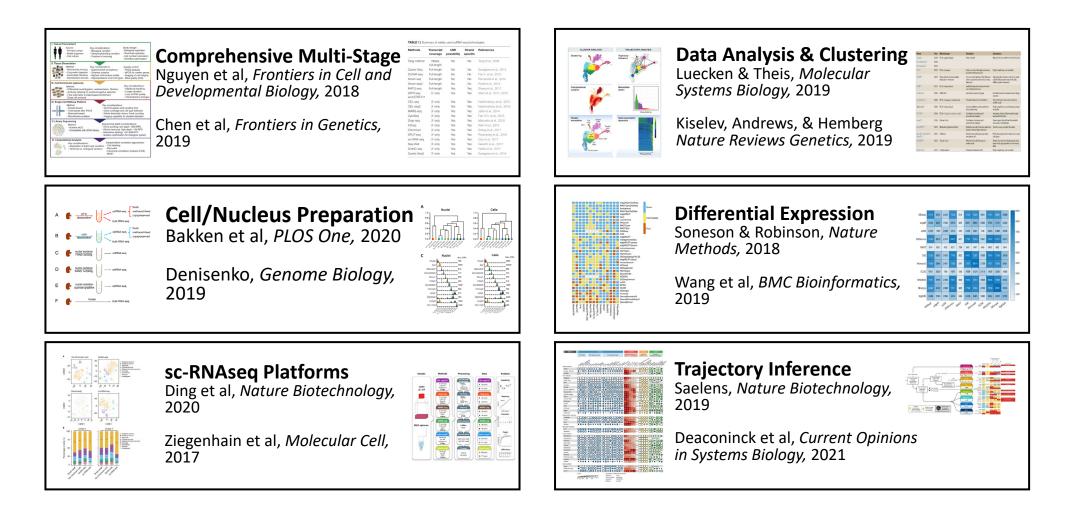
Dr. Rance Nault, Michigan State University

Dr. Joseph Wu, Stanford University Single-Cell Analysis of the Gene Expression Effects of Developmental Lead (Pb) Exposure on the Mouse Hippocampus

Single-cell RNA-seq Analysis Reveals That Prenatal Arsenic Exposure Results in Long-term, Adverse Effects on Immune Gene Expression and in Response to Influenza A Infection

Applications of Single-Cell Transcriptomics in Dose-Response Assessments of the Effects of Dioxin

Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Toxicants on Embryonic Development



ACKNOWLEDGMENTS

- US EPA Chorley Lab
 - Dr. Brian Chorley
 - Gleta Carswell
 - Gail Nelson
 - Nyssa Tucker
- US EPA Hunter Lab
 - Dr. Sid Hunter
 - Susan Jeffay
 - Sarah Park
 - Jessica Conley
- Duke University West Lab
 - Dr. Anne West
 - Melyssa Minto
 - Luke Bartelt

QUESTIONS AND RESOURCES

COMMON PLATFORMS AND ANALYSIS TOOLS

Platforms

Methods	Transcript coverage	UMI possibility	Strand specific	References
Tang method	Nearly full-length	No	No	Tang et al., 2009
Quartz-Seq	Full-length	No	No	Sasagawa et al., 2013
SUPeR-seq	Full-length	No	No	Fan X. et al., 2015
Smart-seq	Full-length	No	No	Ramskold et al., 2012
Smart-seq2	Full-length	No	No	Picelli et al., 2013
MATQ-seq	Full-length	Yes	Yes	Sheng et al., 2017
STRT-seq and STRT/C1	5'-only	Yes	Yes	Islam et al., 2011, 2012
CEL-seq	3'-only	Yes	Yes	Hashimshony et al., 2012
CEL-seq2	3'-only	Yes	Yes	Hashimshony et al., 2016
MARS-seq	3'-only	Yes	Yes	Jaitin et al., 2014
CytoSeq	3'-only	Yes	Yes	Fan H.C. et al., 2015
Drop-seq	3'-only	Yes	Yes	Macosko et al., 2015
InDrop	3'-only	Yes	Yes	Klein et al., 2015
Chromium	3'-only	Yes	Yes	Zheng et al., 2017
SPLiT-seq	3'-only	Yes	Yes	Rosenberg et al., 2018
sci-RNA-seq	3'-only	Yes	Yes	Cao et al., 2017
Seq-Well	3'-only	Yes	Yes	Gierahn et al., 2017
DroNC-seq	3'-only	Yes	Yes	Habib et al., 2017
Quartz-Seq2	3'-only	Yes	Yes	Sasagawa et al., 2018

Alignment Tools

Tools	Category	URL	References
TopHat2	Read mapping	https://ccb.jhu.edu/ software/tophat/ index.shtml	Kim et al., 2013
STAR	Read mapping	https://github.com/ alexdobin/STAR	Dobin and Gingeras, 2015
HISAT2	Read mapping	https://ccb.jhu.edu/ software/hisat2/ index.shtml	Kim et al., 2015
Cufflinks	Expression quantification	https: //github.com/cole- trapnell-lab/cufflinks	Trapnell et al., 2010
RSEM	Expression quantification	https://github.com/ deweylab/RSEM	Li and Dewey, 2011
StringTie	Expression quantification	https://github.com/ gpertea/stringtie	Pertea et al., 2015

Chen et al, Frontiers in Genetics, 2019

COMMON PLATFORMS AND ANALYSIS TOOLS Meth

Cluster Identification

Methods	URL	References
SC3	http://bioconductor.org/packages/SC3	Kiselev et al., 2017
ZIFA	https://github.com/epierson9/ZIFA	Pierson and Yau, 2015
Destiny	https://github.com/theislab/destiny	Angerer et al., 2016
SNN-Cliq	http://bioinfo.uncc.edu/SNNCliq/	Xu and Su, 2015
RaceID	https://github.com/dgrun/RacelD	Grun et al., 2015
SCUBA	https://github.com/gcyuan/SCUBA	Marco et al., 2014
BackSPIN	https:	Zeisel et al., 2015
	//github.com/linnarsson-lab/BackSPIN	
PAGODA	http://hms-dbmi.github.io/scde/	Fan et al., 2016
CIDR	https://github.com/VCCRI/CIDR	Lin et al., 2017
pcaReduce	https: //github.com/JustinaZ/pcaReduce	Zurauskiene and Yau, 2016
Seurat	https://github.com/satijalab/seurat	Satija et al., 2015
TSCAN	https://github.com/zji90/TSCAN	Ji and Ji, 2016

Differential Expression

Methods	Category	URL	Referenes	Tools	Dimensionality	URL	References
ROTS	Single cell	https:	Seyednasrollah		reduction		
		//bioconductor.org/packages/ release/bioc/html/ROTS.html	et al., 2016	Monocle	ICA	http://cole-trapnell-lab. github.io/monocle-release/	Trapnell et al., 2014
MAST	Single cell	https: //github.com/RGLab/MAST	Finak et al., 2015	Waterfall	PCA	https: //www.cell.com/cms/10.	Shin et al., 2015
BCseq	Single cell	https: //bioconductor.org/packages/ devel/bioc/html/bcSeq.html	Chen and Zheng, 2018			1016/j.stem.2015.07.013/ attachment/3e966901- 034f-418a-a439- 996c50292a11/mmc9.zip	
SCDE	Single cell	http: //hms-dbmi.github.io/scde/	Kharchenko et al., 2014	Wishbone	Diffusion maps	https://github.com/ ManuSetty/wishbone	Setty et al., 2016
DEsingle	Single cell	https://bioconductor.org/ packages/DEsingle	Miao et al., 2018	GrandPrix	Gaussian Process Latent	https://github.com/ ManchesterBioinference/	Ahmed et al., 2019
Cencus	Single cell	http://cole-trapnell-lab.github.	Qiu et al., 2017		Variable Model	GrandPrix	
		io/monocle-release/		SCUBA	t-SNE	https://github.com/gcyuan/	Marco et al., 2014
D3E	Single cell	https: //github.com/hemberg-lab/D3E	Delmans and Hemberg, 2016			SCUBA	
BPSC	Single cell	https: //github.com/nghiavtr/BPSC	Vu et al., 2016	DPT	Diffusion maps	https://media.nature.com/ original/nature-assets/ nmeth/journal/v13/n10/	Haghverdi et al., 2016
DESeq2	Bulk	https: //bioconductor.org/packages/ release/bioc/html/DESeq2.html	Love et al., 2014	TSCAN	PCA	extref/nmeth.3971-S3.zip https: //github.com/zji90/TSCAN	Ji and Ji, 2016
edgeR	Bulk	https: //bioconductor.org/packages/	Robinson et al., 2010	Monocle2	RGE	http://cole-trapnell-lab. github.io/monocle-release/	Qiu et al., 2017
		release/bioc/html/edgeR.html		Slingshot	Any	https://github.com/	Street et al., 2018
Limma	Bulk	http: //bioconductor.org/packages/ release/bioc/html/limma.html	Ritchie et al., 2015	CellRouter	Any	kstreet13/slingshot https://github.com/ edroaldo/cellrouter	Lummertz da Rocha et al., 2018
Ballgown	Bulk	http://www.bioconductor.org/ packages/release/bioc/html/ ballgown.html	Frazee et al., 2015				

Trajectory Inference

Differential Expression Tools Soneson & Robinson, *Nature Methods*, 2018

Image: Solution of the second state															
Good Good Good Good Good Good Good Good															edgeRQLFDetRate
Immatrend MASTpmDetRate edgeRQLF ttest voomlimma Wilcoxon MASTcpm MASTcpm Poor SAMseq D3E edgeRLRT metagenomeSeq edgeRLRTCensus edgeRLRTCensus edgeRLRTCensus edgeRLRTCensus															MASTcpmDetRate
edgeRQLF test Wilcoxon MASTcpm MASTtpm Poor SAMseq D3E edgeRLRT metagenomeSeq edgeRLRTcensus edgeRLRTdeconv monoclecensus															limmatrend
Intermediate															MASTtpmDetRate
Voomlimma Wilcoxon MASTcpm MASTtpm Poor SAMseq D3E edgeRLRT metagenomeSeq edgeRLRTcensus edgeRLRTcensus edgeRLRTdeconv monoclecensus															edgeRQLF
voomlimma															ttest Intermediate
MASTcpm MASTtpm MASTtpm MASTpm Mas															
Poor SAMseq D3E edgeRLRT metagenomeSeq edgeRLRTCensus edgeRLRTCensus edgeRLRTCensus edgeRLRTCensus															Wilcoxon
SAMseq D3E edgeRLRT metagenomeSeq edgeRLRTcensus edgeRLRTcensus edgeRLRTcensus															MASTcpm
D3E edgeRLRT metagenomeSeq edgeRLRTcensus edgeRLRTcensus edgeRLRTdeconv monoclecensus															MASTtpm Poor
Image: Constraint of the second se															SAMseq
Image: State Stat															D3E
Image: State Stat															edgeRLRT
edgeRLRTcensus edgeRLRTdeconv															metagenomeSeg
edgeRLRTdeconv															÷ ,
monoclecensus															0
ROTStom															•
															ROTStpm
ROTSvoom			Ξ								=				
DESeq2betapFALSE															DESeg2betapFALSE
edgeRLRTrobust															
monoclecount															
DESeq2nofilt															
ROTScpm															
											Ξ				
					\square	\square									NODES
DESeq2census															
scDD															
BPSC															BPSC
															SCDE
SeuratBimodnofilt															
SeuratBimodIsExpr2							Ē	Ξ							SeuratBimodIsExpr2
SeuratBimod															
$\leq \leq \exists \geq \leq \leq \leq \leq \otimes \otimes$	z	z	Ξ	≥	≤	≤	z	z	Ś	S	в	0	0	Т	
FailureRate ComplexDesign Coonsistency BiasDEG Speed Scalability MaxFPR_FL MedianFPR_FL MedianFPR_UMI MedianFPR_UMI MaxFPR_UMI MedianFPR_UMI	edi	axf	R	R	edi	ax	edi	ax	cala	pee	as	ons	Я	ailu	
an P C an P P B B B B B B B B B B B B B B B B B	an	ģ		8	an	P	an	P	abil	ă	B	sist	ple	ref	
မ်းက ကိုင်းမျိုးကို ကိုင်းနှိုင်း	Ð	0			P	2	P	Ļ,	Ţ		മ	enc	ð	at	
	70				2	M	1	Ľ,				ž	esi	Φ	
FailureRate ComplexDesign Consistency BiasDEG Speed Scalability MaxFPR_FL MedianFPR_LUMI AUROC TPR MaxFDP					M	_	ť,						'n		

Clustering Tools Kiselev, Andrews, & Hemberg *Nature Reviews Genetics*, 2019

Name	Year	Method type	Strengths	Limitations
scanpy ⁴	2018	PCA+graph-based	Very scalable	May not be accurate for small data sets
Seurat (latest) ³	2016			
PhenoGraph ³²	2015			
SC3 ²²	2017	PCA+k-means	High accuracy through consensus, provides estimation of <i>k</i>	High complexity, not scalable
SIMLR ²⁴	2017	Data-driven dimensionality reduction + <i>k</i> -means	Concurrent training of the distance metric improves sensitivity in noisy data sets	Adjusting the distance metric to make cells fit the clusters may artificially inflate quality measures
CIDR ²⁵	2017	PCA+hierarchical	Implicitly imputes dropouts when calculating distances	
GiniClust ⁷⁵	2016	DBSCAN	Sensitive to rare cell types	Not effective for the detection of large clusters
pcaReduce27	2016	PCA+k-means+hierarchical	Provides hierarchy of solutions	Very stochastic, does not provide a stable result
Tasic et al. ²⁸	2016	PCA+hierarchical	Cross validation used to perform fuzzy clustering	High complexity, no software package available
TSCAN ⁴¹	2016	PCA+Gaussian mixture model	Combines clustering and pseudotime analysis	Assumes clusters follow multivariate normal distribution
mpath ⁴⁵	2016	Hierarchical	Combines clustering and pseudotime analysis	Uses empirically defined thresholds and a priori knowledge
BackSPIN ²⁶	2015	Biclustering (hierarchical)	Multiple rounds of feature selection improve clustering resolution	Tends to over-partition the data
RacelD ²³ , RacelD2 ¹¹⁵ , RacelD3	2015	k-Means	Detects rare cell types, provides estimation of <i>k</i>	Performs poorly when there are no rare cell types
SINCERA ⁵	2015	Hierarchical	Method is intuitively easy to understand	Simple hierarchical clustering is used, may not be appropriate for very noisy data
SNN-Cliq ⁸⁰	2015	Graph-based	Provides estimation of k	High complexity, not scalable