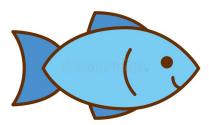
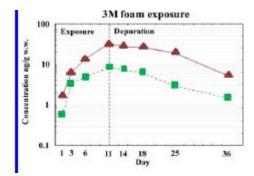


BCFs and BAFs for PFAS:

Reviewing and Coding of Literature Values


Lawrence Burkhard


Center for Computational Toxicology and Exposure Great Lakes Toxicology and Ecology Division 12-April-2022

Office of Research and Development

Definitions

- BCF Bioconcentration Factor
 - $BCF = \frac{C_{biota}}{C_{water}}$ L/kg-ww = (µg/kg-ww)/(µg/L)
 - Laboratory exposure
 - Dosing via water only (uptake across gills)
 - Standard protocols.
 - Steady-state endpoints (or 28-d measurement)
 - · Uptake and elimination kinetics
- BAF Bioaccumulation Factor
 - $BAF = \frac{C_{biota}}{C_{water}}$ L/kg-ww
 - Field exposure
 - All exposure routes
 - Food, water, sediments via skin contact and ingestion

Bioaccumulation: Background

- Why is chemical bioaccumulation important?
 - EPA's Ambient Water Quality Criteria (AWQC) for Protection of Human Health

Noncancer Effects²

$$AWQC = RfD \cdot RSC \cdot \left(\frac{BW}{DI + \sum_{i=2}^{4} (FI_i \cdot BAF_i)}\right)$$

(Equation 1-1)

2000 Methodology

DI = drinking water intake

FI = fish intake at trophic levels 2, 3 & 4

BAF = bioaccumulation factor at TLs 2, 3 & 4

BW = human body weight

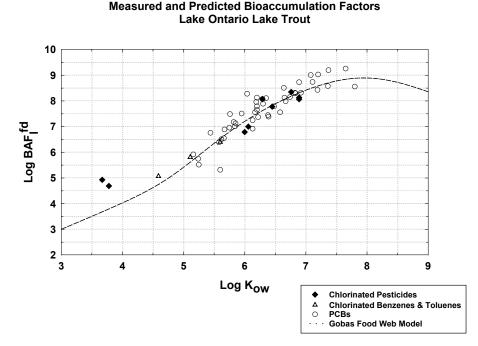
RfD = reference dose for noncancer effects

RSC = Relative source contribution factor

Equal exposures between DI and FI routes: BAF ≈ 3000 BAF > 3000, dietary exposure primary uptake route BAF < 3000, water exposure primary uptake route

PFAS

Per- and polyFluorinated Alky Substances (PFAS)


- 4730 PFAS-related CAS (OECD 2018)
- PFOS
- Numerous uses
 - Fire fighting foams (AFFF)
 - Stain resistance and flammability
 - Carpets, furniture
 - Water-repellent clothing
 - Surface coatings (non-stick cookware)
 - Electroplating
 - •

PFOA

Bioaccumulation of Legacy Chemicals

- Models for legacy chemicals
 - PCBs, DDTs, PCDD/Fs ...
 - Uptake and excretion processes controlled by diffusional mass transport processes
 - Lipids major storage tissue

NOT applicable to PFAS

- Different processes
 - Renal transporters
 - Binding to cytosolic fatty acid binding proteins & to albumin
- Model development in its infancy
 - Decade or two to develop???

Needs & Path Forwards

- OW
 - Actively developing ambient water quality criteria
 - Human health & aquatic life and aquatic dependent wildlife
 - PFOS and PFOA
- OPPTS (TSCA)
 - Screening of new PFASs
- OLEM (Superfund)
 - Needs data for setting cleanup levels
- States & DOD actively developing their own criteria
 - Fish consumption advisories by states
- Path Forwards:
 - Use Empirical BAF data in criteria development

PFAS

- Persistent
 - Do not degrade
- Toxic
 - Some PFAS are toxic to fish, wildlife and/or humans
- Bioaccumulative
 - Some PFAS accumulate in tissues
- QuestionS:
 - What do we know about PFAS bioaccumulation?
 - What are the gaps in knowledge for PFAS?

Literature Searching

- Two steps
 - Ecotoxicology Knowledgebase (ECOTOX)
 - SWIFT review

ECOTOX Searching

•	Developed a series of chemical-based search terms	(2018 se
	 Chemical Abstracts Service registry numbers (CASRN or CAS): 	207

- ٠ Chemical names:
 - synonyms, tradenames, and other relevant forms, i.e., metabolites, degradants, parent compounds and related chemicals
- Libraries searched:
 - Current Contents, ProQuest CSA, Dissertation Abstracts, Science Direct, Agricola, TOXNET, and UNIFY
- Yielded:
- Removal non-relevant papers yields: •
 - Non-relevant papers: Duplicates, analytical methods, human health, bacteria, terrestrial studies with inhalation route of exposure, PFAS was not the chemical of study ٠
- Creation of RIS files
 - Bibliographic citation file saved in a format developed by Research Information Systems
 - Searches 2019, 2020 & 2021 **# of Citations FY18 FY19 FY20 FY21** Citations 487,497 693,215 29,775 98,789 Reviewed 8,181 47,816 7,158 140,966

Office of Research and Development

>29,000 citations

8181 citations

earch) 174

SWIFT Review

- SWIFT
 - "Sciome Workbench for Interactive computer-Facilitated Textmining"
 - Freely available software
- Import RIS files
 - Automatically tag documents in various categories
 - One can develop their own tags
 - Search terms/tags
 - BCF (bioconcentration factor), BAF (bioaccumulation factor), BSAF (biota-sediment accumulation factors), bioaccumulation, bioconcentration, uptake, depuration, and accumulation

SWIFT Review

- Identified citations
 - Obtained and reviewed
- Coded papers with applicable data
 - Is endpoint reported?
 - Are data provided to derived the endpoint?
 - Concentrations in aquatic organism and water
- 280 papers coded to date
 - 13 in review
 - Not codable:
 - Reviews (code original source)
 - · Reports have only data for tissue or water only

Coding Process

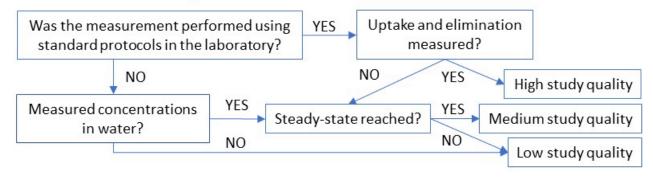
- Excel template
 - Completed template for each citation individually

• Fields

- Chemical name, chemical abbreviation, CAS, and citation
- Endpoint & concentration data (units)
- Organism, taxonomy, tissue (whole body, fillet, blood ...)
- When available, weight, length, age, sex ...
- BCF kinetic information
- BAF sampling design information
 - Numbers of samples, samples' spatial and temporal coordination

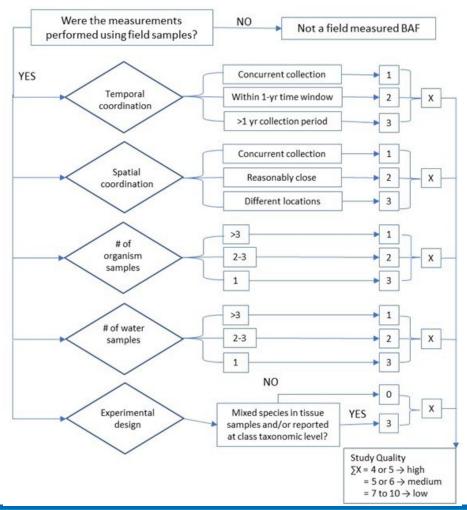
Coding Process

- Field studies
 - Concentrations are often reported being below the detection limit (<MDL).
 - Left censoring
 - There are techniques for addressing this issue in risk assessment.
 - Superfund ½ MDL
 - Statistical techniques, e.g., Kaplan-Meier
- Endpoint coded:
 - Only when all tissue and water samples above detection limit (MDL)
 - No coding if < 100% quantification


Coding process: Study quality

- How good are the measurements?
 - Field studies: Wide variety of study designs
 - Ranking system of high, medium and low study quality
 - Klimisch et al 1997
 - 1 ("Reliable"), 2 ("Reliable with Restrictions"), 3 ("Not Reliable")
 - Importance of the ranking cannot be understated!

Study quality evaluation for BCF measurements


Evaluation of Laboratory Measured BCFs

Study quality evaluation for BAF measurements

Evaluation of BAFs Measured in the Field

Office of Research and Development

Study Quality

8,479

42%

- BCFs & BAFs
 - High 35%
 - Medium 23%
 - Low

Issues in Coding

• Unclear

- Laboratory procedures
- · Sampling locations and collection times
- Numbers of samples collected and analyzed
- Data calculations, <MDL
- Units
- Raw data (concentrations in tissue and water) don't align with reported BCF/BAFs.
 - QA/QC check: Template computes BCF/BAFs from concentration data
- Unusual reporting units
 - · Concentrations in tissue on dry weight
 - wet weight is standard
 - · Concentrations in sediment on wet weight
 - dry weight is standard
- Endpoints reported
 - Range of values (min-max)
 - Confidence limits

Data Set Synthesis

- Created master Excel file from templates
- Flat file:
 - Endpoints recorded as reported
 - Endpoints converted to units of L/kg-ww
 - BCFs
 - Standard protocols: BCF_{SS} & BCF_K are reported
 - Preference given to BCF_K

Easily uploaded to data base programs by others

			CAS	Abł	previation	Log BCF Steady- State (mean)	Log BCF Steady- State (stdev)	Log BCF Steady- State (min)	Log BCF Steady- State (max)	Log BCF Steady-State (lower Cl)	Log BCF Steady-State (upper CI)	(ari	F Steady-Stat ithmetic or garithmic)	te Log BCF Steady- State (units)
Log BCF Steady- State (units)		Log BCF Kinetic (mean)	Log BCF Kinetic (stdev)	Log BCF Kinetic (min)	Log BCF Kinetic (max)	Kinetic	Log Bo Kinet (upper	ic (ai	BCF Kinetic rithmetic or garithmic)	Log BCF Kinetic (units)			djustment ' to WW)	Finalized log10 BCF (L/kg-ww)
	Log BAF (mean)	Log BAF (stdev)	Log BAF (min)	Log BAF (max)	Log BAF (lower Cl)	Log BAF (upper C		3AF (arithm logarithmic			BAF Adjus (DW to		Finalized log10 BAF (L/kg-ww	-

Data Set Synthesis

- Flat file has sheet with list of coded papers
 - Short name used in the templates
 - Complete citation

BCF data	OECD 305	ku	ku - sd	units	days of uptake	ke	ke - sd	units	days of elimination	half-life (days)	half-life sd (days)	SS	Kinetic	Exposure Concentrations	Study Quality: BCF
----------	----------	----	---------	-------	-------------------	----	---------	-------	------------------------	------------------	------------------------	----	---------	-------------------------	--------------------------

BAF	BAF: # of water samples	BAF: start date for water sampling	BAF: end date for water sampling	BAF: # of biota samples	BAF: start date for biota sampling	BAF: end date for biota sampling	Average weight (g)	Average Length (cm)	Sex (F/M)	Average Age	Age (sd)	General experimental design	Water & Biota spatial coordination	Water & Biota temporal coordination	Number Biota Samples	Number of Water Samples	Study Quality: BAF
-----	-------------------------------	--	---	-------------------------------	---	--	-----------------------	------------------------	-----------	----------------	----------	-----------------------------------	---------------------------------------	---	-------------------------	----------------------------	--------------------

Mixture Exposure	Concentration in Biota (mean)	in Biota	Concentration	Concentration in Biota (MDL)	Comments - Biota Samples	Concentration in Water (mean)	Concentration in Water (stdev)	Concentration in Water (units)	Concentration in Water (MDL)	Comments - Environmental Media
---------------------	----------------------------------	----------	---------------	---------------------------------	--------------------------	----------------------------------	--------------------------------------	--------------------------------------	------------------------------------	-----------------------------------

Marine, Brackish, Freshwater	Comments - Marine, Brackish, Freshwater		Taxonomy Name Level	kingdom	phylum	class	order	family	genus	species	ITIS TaxID	NCBI TaxID	GBIF TaxID
------------------------------------	--	--	------------------------	---------	--------	-------	-------	--------	-------	---------	------------	------------	------------

Data Availability:

Bioconcentration Factors (BCF = $C_{biota}/C_{water,}$ laboratory) Bioaccumulation Factors (BAF = $C_{biota}/C_{water,}$ field)

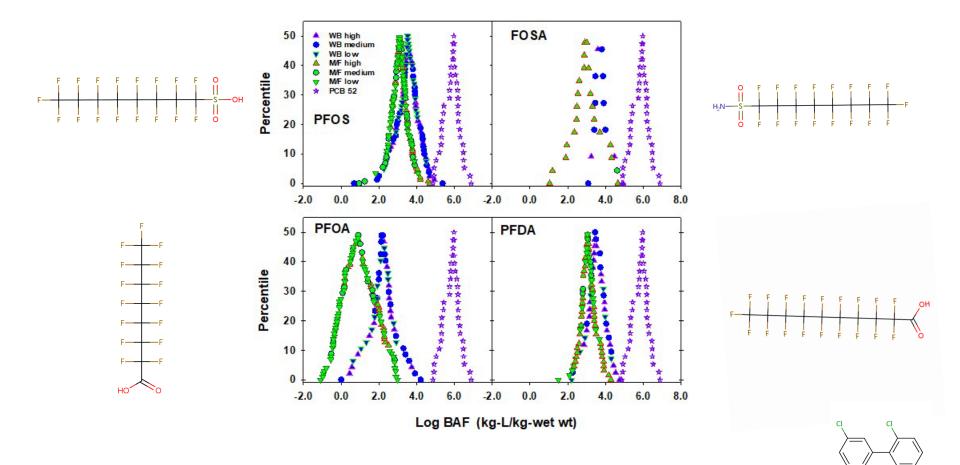
- Data rich
 - Carboxylic & Sulfonic acids
 - PFOS & PFOA
- Data poor
 - Ethers, Fluorotelomers & Phosphates
 - GenX, 8:2 FTOH, 6:2 FTSA
- Quality varies widely
 - Field measurements
 - OECD 305 BCF methodology: high quality
- Number of measurements
 - 22 taxonomic classes
 - Fish > Bivalves, Malacostraca (shrimp, crabs ...) & Plants (Magnoliopsida)
 - Field (BAFs) > Laboratory (BCFs) measurements

Burkhard, L.P., 2021. Environ Toxicol Chem. 40(6) 1530-1543 Corrigendum 2021 Environ Toxicol Chem. 40(10) 2935-2940

Carboxylic Acids

BCFs and BAFs for PFCA (median ± standard deviation [n])

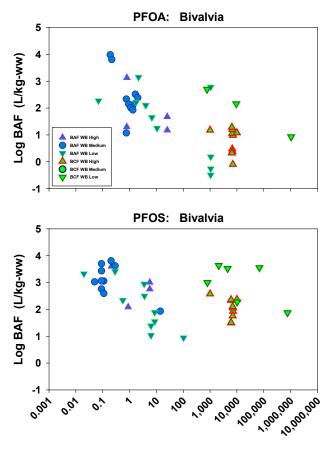
	Tissue	whole body	muscle/fillet	liver	whole body	muscle/fillet	liver
	Bioaccumulation Metric	Log BCF Steady-State	Log BCF Steady-State	Log BCF Steady-State	Log BAF	Log BAF	Log BAF
Chemical	CAS Number	Log BCF Kinetic	Log BCF Kinetic	Log BCF Kinetic			
Carbonyl Compour	nds - OECD Structure Categor	ry 100					
arboxylic acids - 0	OECD Structure Category 102						
PFBA	45048-62-2	1.18 ± 0.08(2)	-0.22 ± 1.15(5)	1.8 ± 1.23(5)	2.16 ± 1.68(6)	0.47 ± 0.96(40)	0.37 ± 1.11(3)
PFPeA	45167-47-3	-0.05 ±(1)	-0.64 ± 1.21(3)	1.15 ± 1.53(3)	1.74 ± 2.45(5)	0.15 ± 1.46(18)	1.48 ± 1.43(4)
PFHxA	92612-52-7	0.98 ± 0.3(3)	0.4 ± 1.01(5)	1.73 ± 0.99(5)	1.4 ± 1.51(11)	0.09 ± 1.34(19)	2.79 ± 1.62(6)
PFHpA	120885-29-2	1.26 ±(1)	0.51 ± 1.24(3)	1.78 ± 1.2(3)	1.8 ± 1.24(10)	-0.16 ± 1.27(32)	0.92 ± 0.99(6)
PFOA	45285-51-6	1.38 ± 0.61(14)	0.82 ± 1.18(7)	1.93 ± 1(13)	2.16 ± 0.87(48)	0.9 ± 1.14(105)	1.97 ± 1.05(48)
PFNA	72007-68-2	2.78 ± 0.51(6)	2.8 ± 0.4(4)	3.79 ± 0.24(3)	2.8 ± 1.15(41)	2.07 ± 0.76(88)	2.84 ± 0.73(20)
PFDA	73829-36-4	3.79 ± 0.48(3)	3.81 ± 0.54(4)	2.98 ± 0.93(8)	3.45 ± 0.62(43)	3.06 ± 0.49(72)	3.72 ± 0.65(30)
PFUnDA	196859-54-8	3.57 ± 0.31(5)	3.97 ± 0.88(4)	3.41 ± 0.74(8)	3.47 ± 1.01(21)	3.89 ± 0.77(54)	4.34 ± 0.72(27)
PFDoDA	171978-95-3	3.64 ± 0.6(8)	4.12 ± 0.83(4)	4.46 ± 1.16(4)	2.18 ±(1)	4.5 ± 1.57(28)	4.32 ± 1.52(17)
PFTrDA	862374-87-6	4.34 ± 0.46(2)	4.51 ± 0.85(2)	5.22 ± 1.08(2)		4.66 ± 0.16(3)	5.43 ±(1)
PFTeDA	365971-87-5	4.4 ± 0.56(4)	4.96 ± 0.62(2)	4.74 ± 1.09(3)		4.38 ±(1)	5.08 ±(1)
PFHxDA	67905-19-5	3.68 ± 0.01(2)					
PFOcDA	16517-11-6	2.57 ± 0.09(2)					


Sulfonic Acids

BCFs and BAFs for PFSA (median ± standard deviation [n])

	Tissue	whole body	muscle/fillet	liver	whole body	muscle/fillet	liver
	Bioaccumulation Metric	Log BCF Steady-State	Log BCF Steady-State	Log BCF Steady-State	Log BAF	Log BAF	Log BAF
Chemical	CAS Number	Log BCF Kinetic	Log BCF Kinetic	Log BCF Kinetic			
Sulfonyl Compound	s - OECD Structure Categor	y 200					
Sulfonic Acids - OEC	D Structure Category 202						
PFBS	375-73-5	1.06 ± 0.49(7)	0.09 ± 1.15(4)	1.74 ± 1.06(5)	2 ± 1.13(5)	1.35 ± 0.84(16)	1.18 ± 0.34(5)
PFHxS	355-46-4	2.07 ± 0.25(6)	1.34 ± 0.19(2)	2.41 ± 0.4(4)	2.3 ± 0.74(25)	1.28 ± 0.86(56)	2.18 ± 0.58(17)
PFHpS	375-92-8					2.2 ±(1)	3.2 ± 0.1(3)
PFOS	1763-23-1	3.01 ± 0.66(21)	3.27 ± 0.96(7)	3.17 ± 0.88(17)	3.52 ± 0.78(81)	3.09 ± 0.6(155)	3.74 ± 0.84(61)
PFDS	335-77-3			3.21 ±(1)	1.3 ±(1)		4.2 ± 0.15(3)
PFECHS	PFECHS						
ulfonamides - OE	CD Structure Category: 203.0)1					
FOSA	754-91-6				3.7 ± 0.53(12)	2.95 ± 0.94(24)	4 ± 0.2(11)
ulfonamidoacetic	acids - OECD Structure Categ	gory: 203.05					
MeFOSAA	2355-31-9				4.1 ± 0.16(2)		
EtFOSAA	2991-50-6				3.5 ± 0.06(2)		3.45 ± 0.21(2)
Perfluoroalkane sul	fonyl amido ethanols, phos	ohate esters (SAmPAPs)	- OECD Structure Cate	gory: 203.02			
SAmPAP	2965-52-8	1.42 ±(1)					

Fish Bioaccumulation Factors (BAFs)



Office of Research and Development

ć

Gaps & Limitations

- Effects of concentration
- Freshwater = Marine???
- Species consumed by humans
 - Carboxylic & Sulfonic acids
 - Enough BCF/BAF data
 - Ethers, Fluorotelomers & Phosphates
 - Need measurements
- Effects of mixtures
- Expected values for BAFs
- Uptake & elimination rate
 - Limited information/data
- Biotransformation rates
 - Ethers and Fluorotelomers
- Mechanistic models
 - Initial stages of development

Concentration (ng/L)

Questions Acknowledgements & Contact Information

Thank you!

Lawrence Burkhard

Research Chemist
Great Lakes Toxicology and Ecology Division
US EPA
Center for Computational Toxicology and Exposure
<u>burkhard.lawrence@epa.gov</u>

Contract staff: Lauren Votava, ORAU

