

Computational approaches to integrate DNT NAMs for fit-for-purpose identification of DNT hazard

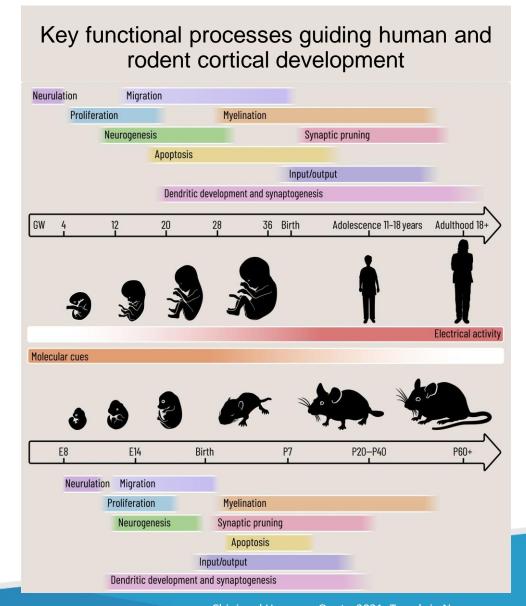
Kelly Carstens, PhD

U.S. Environmental Protection Agency Research Triangle Park, NC

Email: carstens.kelly@epa.gov

ORCiD: 0000-0002-1746-5379

Office of Research and Development

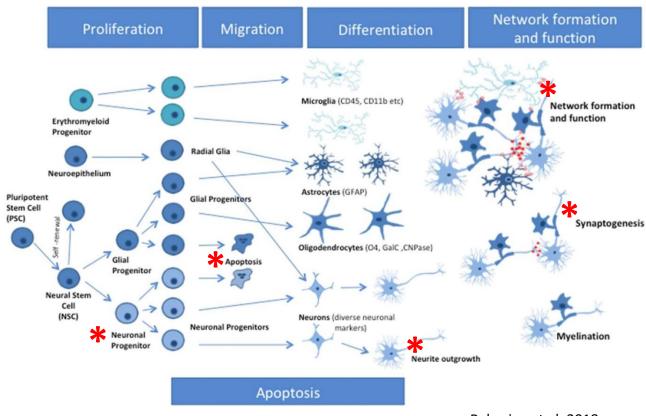

Center for Computational Toxicology and Exposure Biomolecular and Computational Toxicology Division Computational Toxicology and Bioinformatics Branch

Conflict of Interest Statement

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Background on developmental neurotoxicity (DNT) new approach methods (NAMs)

- Neurodevelopmental disability is the most prevalent chronic medical condition encountered in pediatrics (Zablotsky et al. 2019).
- ❖ Both genetic and environmental risk factors have been identified as underlying causes driving this prevalence.
- DNT NAMs battery: multi-dimensional DNT screening assays that cover complex neurobiological space: temporal, different 'key events' in neurodevelopment, cell-types, and species.
- Challenges in evaluating DNT NAMs:
 - No single in vitro screening assay can recapitulate all critical cellular events of neurodevelopment.
 - Some compounds may disrupt specific cellular events at different stages of development.
 - Some neural cell-types may be differentially sensitive to perturbation.



Overview

DNT NAMs: multi-dimensional DNT screening assays that cover complex neurobiological space: multiple 'key events' in neurodevelopment, different cell-types, developmental timepoints, and species.

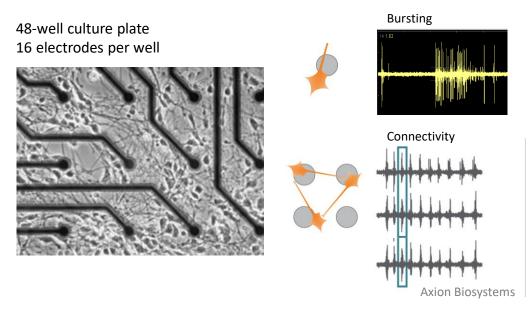
- How does a broad screening battery collectively inform DNT-relevant bioactivity?
- Can we build a model to classify compounds that demonstrate in vivo DNT bioactivity?
- Can we identify biological gaps in the current EPA DNT NAM battery and/or broader ToxCast/ Tox21 database?

Neurodevelopmental processes in the EPA DNT NAM battery

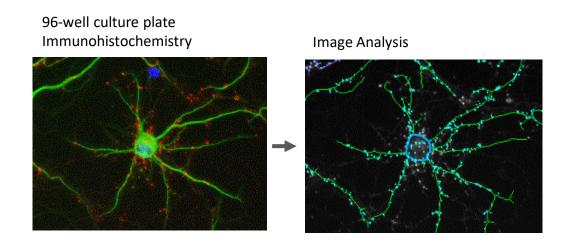
Bal-price et al. 2018

Table 2. Proposed Assays for Evaluation As an In Vitro DNT Battery

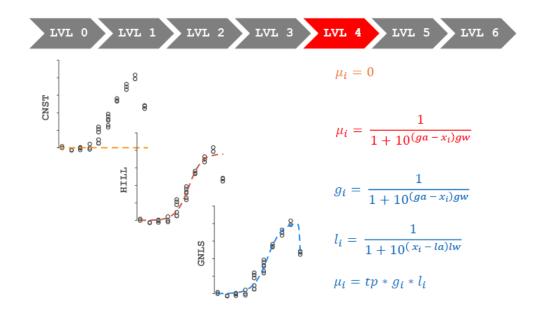
Process	Assays	References		
Proliferation	hNP1	Harrill et al. (2018)		
	NPC1	Baumann et al. (2016) and Barenys et al. (2017)		
	UKN1	Balmer et al. (2012)		
Apoptosis -	hNP1	Harrill et al. (2018)		
Migration	NPC2	Baumann et al. (2016) and Barenys et al. (2017)		
	UKN2	Nyffeler et al. (2017)		
Neuron differentiation	NPC3	Baumann et al. (2016) and Barenys et al. (2017)		
Oligodendrocyte differentiation & maturation	NPC5/6	Baumann et al. (2016) and Barenys et al. (2017)		
Neurite outgrowth -	iCell gluta (hN2)	Harrill et al. (2018)		
	UKN 4 & 5 (rat)	Krug et al. (2013)		
	NPC4	Baumann et al. (2016) and Barenys et al. (2017)		
Synaptogenesis -	Rat primary	Harrill et al. (2018)		
	synaptogenesis			
Network formation -	MEA-NFA (rat)	Brown et al. (2016) and Frank et al. (2018)		


Sachana, M., et.al. 2019, Toxicological Sciences

Experimental models in the EPA DNT NAM battery


Microelectrode Array (MEA) Network Formation Assay (NFA)

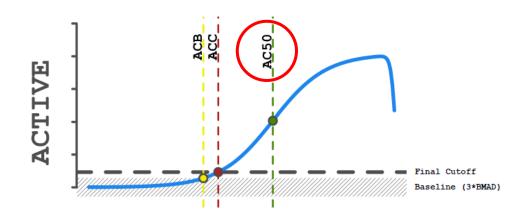
High Content Imaging


Cell culture	Activity type	# endpoints
Primary rat cortical	↓ ↑ General activity	4
neurons (DIV 5, 7, 9, 12)	↓ ↑ Network connectivity	8
(514 3, 7, 3, 12)	↓ ↑ Bursting	5
	Cytotoxicity	2

Cell culture	Assays/ Key events	# endpoints
Primary rat cortical	Neurite Outgrowth (NOG)	4
neurons	Synaptogenesis and Neurite maturation	8
Human hN2 neural cells	NOG	4
Human hNP1	Proliferation	3
neuroprogenitors	Apoptosis	2

Defining bioactivity using the ToxCast pipeline

Model fitting (constant, hill, gain-loss)

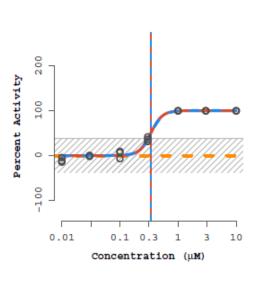


https://cran.r-project.org/web/packages/tcpl/vignettes/Data_processing.html#level-4

Select winning model and hit-calling

Point of departure estimates:

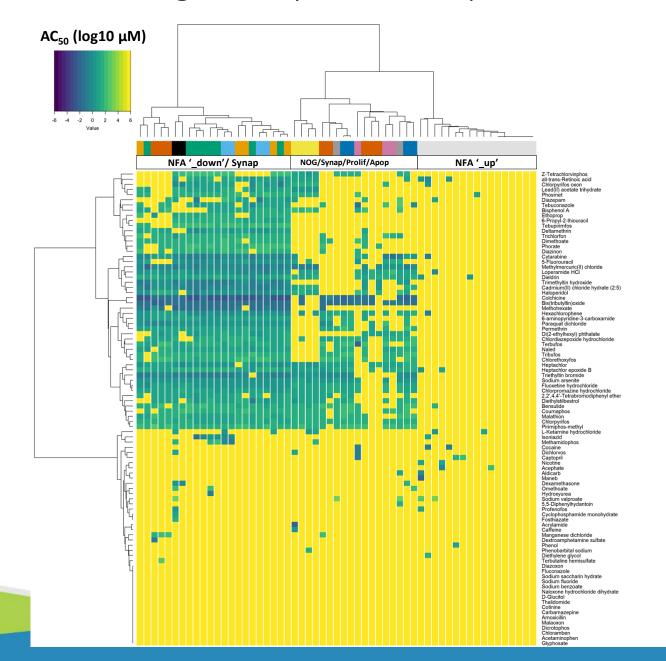
ToxCast pipeline (tcpl) R package (version 2.0.3 <u>publicly available</u>) (Filer et al. 2017)


Defining bioactivity using the ToxCast pipeline

Model fitting (constant, hill, gain-loss)

LVL 0 LVL 1 LVL 2 LVL 3 LVL 4 LVL 5 LVL 6 $\mu_i = 0$ $\mu_i = \frac{1}{1 + 10^{(ga - x_i)gw}}$ $g_i = \frac{1}{1 + 10^{(ga - x_i)gw}}$ $l_i = \frac{1}{1 + 10^{(x_i - la)lw}}$ $\mu_i = tp * g_i * l_i$

Select winning model and hit-calling



ASSAY	AEID2	500 (CCTE	Shafer	MEA_dev	_bursting_el	ect
CHID: SPID(8						
HILL P	MODEL (in	red):				
		ga				
val:	100	-0.469	4.43			
sd:	1.29	0.0287	2.18			
GAIN-I		L (in blue				
	tp	ga	gw	la	lw	
val:	101	-0.465	4.21	1.22	10.2	
		NaN				
	CNST	HILL	0	INLS		
AIC:	240.39	135.2	1 1	139.17		
PROB:	0	0.88	0).12		
RMSE:	67.13	5.4	9	5.39		
MAX ME	ZAN: 100	MAX	MED: 10	00	BMAD: 12.8	
_		-				
COFF:	39.3 H	IT-CALL:	1 FIT	C: 41	ACTP: 1	
FLAGS						

ToxCast pipeline (tcpl) R package (version 2.0.3 <u>publicly available</u>) (Filer et al. 2017)

How does a broad screening battery collectively inform DNT-relevant bioactivity?

Activity Type

NOG initiation, rat

Synaptogenesis/maturation, rat

NOG initiation, hN2

Apoptosis, hNP1

Proliferation, hNP1

Cytotoxicity MEA

General

MEA NFA '_up'

Bursting

Network Connectivity

NFA: Network formation assay

Synap: Synaptogenesis **NOG**: Neurite outgrowth

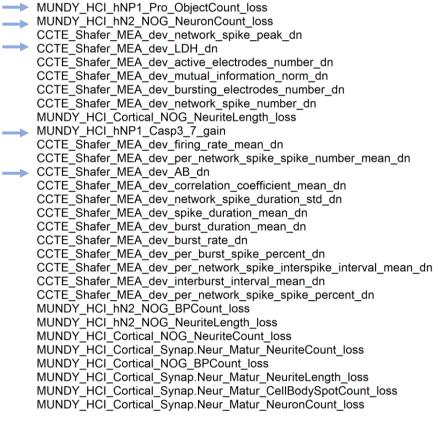
Prolif: Proliferation


Apop: Apoptosis

Evaluating sensitivity in the DNT NAM battery

Minimum potency by endpoint

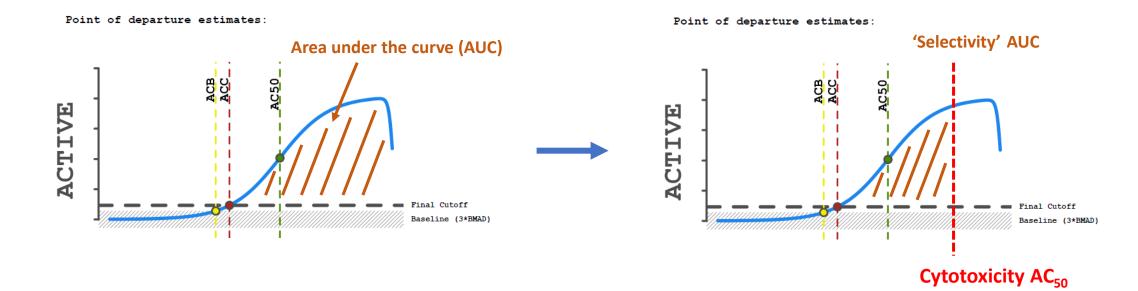
MEA dev mutual information norm dn -MEA dev LDH dn-MEA dev network spike duration std dn-HCI hNP1 Pro ObjectCount loss -MEA_dev_per_network_spike_interspike_interval_mean_dn activity MEA dev network_spike_number_dn -HCI_Cortical_Synap&Neur_Matur_NeuronCount_loss -Cytotoxicity HCI_hN2_NOG_NeuronCount_loss -HCI hN2 NOG BPCount loss General MEA_dev_correlation_coefficient_mean_dn -HCI hNP1 Casp3 7 gain -Bursting HCI Cortical Synap&Neur Matur NeuriteLength loss -**Network Connectivity** MEA dev network spike peak dn-MEA dev interburst interval mean dn-NOG initiation, hN2 MEA dev firing rate mean dn-MEA dev bursting electrodes number dn-Proliferation, hNP1 HCI hNP1 Pro MeanAvgInten loss -Synaptogenesis/maturation, rat HCI hN2 NOG NeuriteLength loss MEA dev spike duration mean dn -MEA dev per network spike spike percent dn -MEA_dev_per_burst_interspike_interval_dn -MEA dev active electrodes number dn -MEA dev AB dn -**Percent of Chemicals**


Minimum potency by activity type

Network connectivity and cytotoxicity are the most sensitive 'activity types' in the battery.

Evaluating sensitivity in the DNT NAM battery

Feature importance


A supervised machine learning algorithm identifies cytotoxicity (hNP1 cell line) as the most important endpoint in predicting minimum potency in the DNT NAM battery.

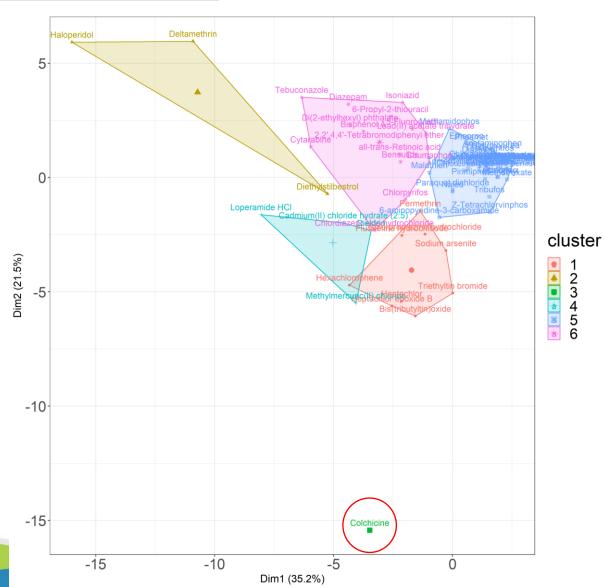
 $randomForest(minimum.potency \sim + potency.matrix)$

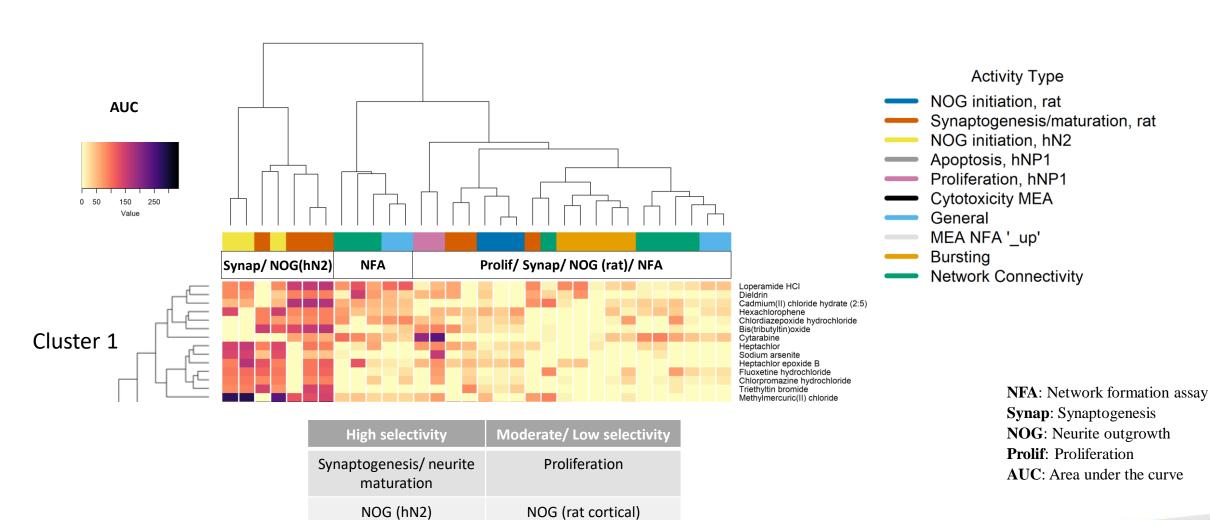
%IncMSE: Percent increase in mean square error (MSE)

Calculating a *selectivity* metric:

Selectivity: activity at concentrations lower than cytotoxicity.

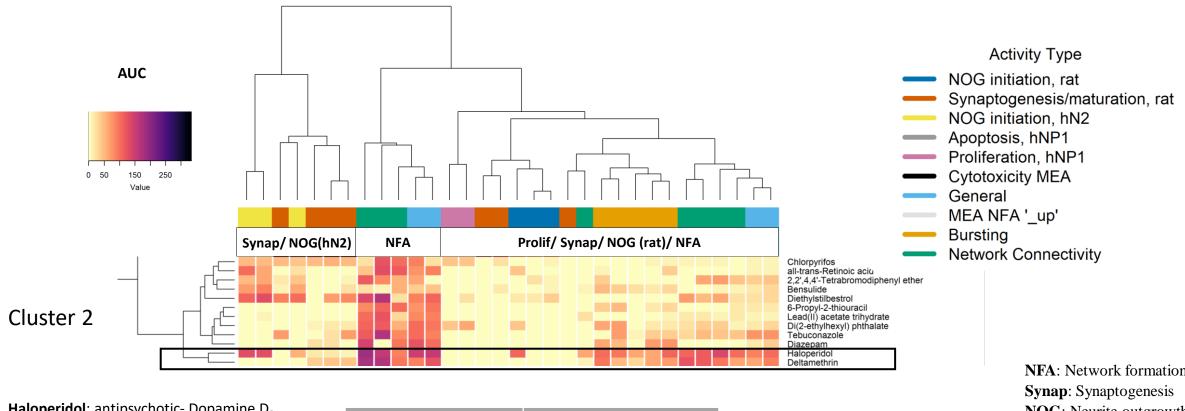
https://cran.r-project.org/web/packages/tcpl/vignettes/Data_processing.html#level-4




Captopril Sodium fluoride

Acrylamide
Acrylamide
Sodium saccharin hydrate
Fluconazole
Diazoxon
Fosthiazate

Unsupervised machine learning algorithm


K-means clustering

Carstens et al. 2022

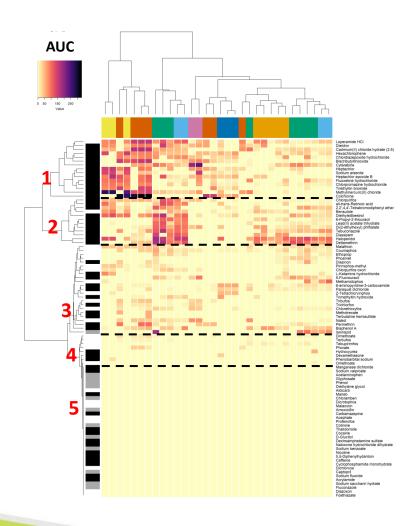
Network formation

Haloperidol: antipsychotic- Dopamine D₂

receptor antagonist

Deltamethrin: pyrethroid insecticidevoltage-gated sodium channels modulators

High selectivity	Moderate/ Low selectivity
Network connectivity	NOG (hN2)
General neuronal activity	Bursting

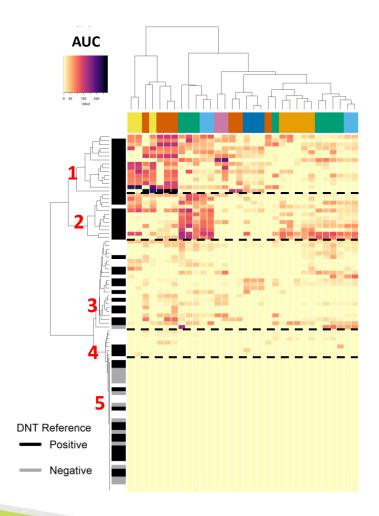

NFA: Network formation assay

NOG: Neurite outgrowth

Prolif: Proliferation

AUC: Area under the curve

Carstens et al. 2022



Key findings

- Selective data is more informative in identifying differential patterns of functional bioactivity compared to non-selective data.
- A subset of compounds demonstrate cell-type specific effects (active in the NOG assay in the hN2 cell model but not rat cortical).
- Selective activity clusters do not appear to be explained by shared mode-of-action.
- Limitations in evaluating relationships between bioactivity clusters and mode-of-action or activity-structure due to a limited dataset.

Carstens et al. 2022

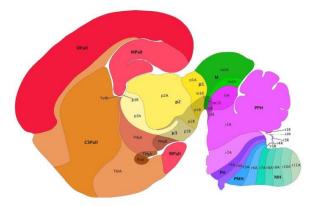
Can we build a model to classify compounds that demonstrate in vivo DNT bioactivity?

		In vivo evaluation chemicals			
		Positive (53) Mundy et al. 2015 Aschner et al. 2016 Harrill et al. 2018	Negative (13) Martin et al. under revision		
	Cluster 1 Synap/ prolif/ NOG/ Neurite maturation	14	0		
u	Cluster 2 General/ network/ bursting activity/ synap	11	0		
Classification	Cluster 3 General/ network activity/ bursting/ synap/NOG	11	1		
Clas	Cluster 4 General/ network activity/ bursting/ synap/ NOG	3	0		
	Cluster 5 'Inactive/ equivocal'	14	12		

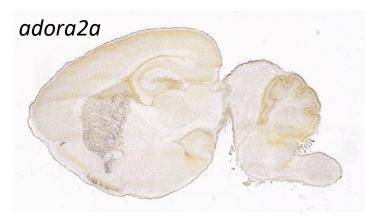
_		Positive	Negatives
	Selective activity (Clusters 1,2,3,4)	True positive: 39	False positive:1
	Inactive/ equivocal (Cluster 5)	False negative: 14	True Negative: 12

<u>Selective</u>	Non-selective
Sensitivity= 74%	Sensitivity= 93%
Specificity= 92%	Specificity= 69%

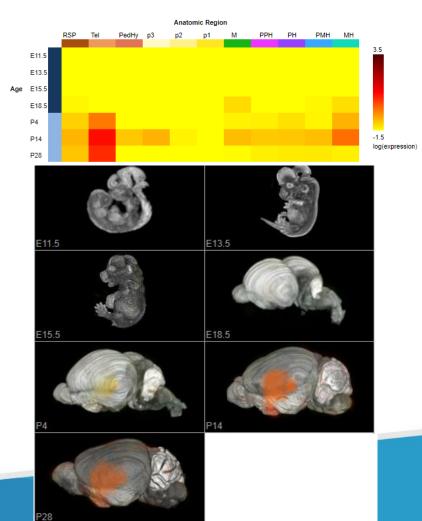
Carstens et al. 2022


Can we identify biological gaps in the current EPA DNT NAM battery?

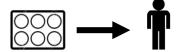
Are we capturing the target mechanism in the DNT NAM battery?


False negative: Caffeine

Caffeine targets adenosine receptor (adenosine A2a receptor) Is adenosine expressed in cortical cells in early development?


P4 mouse brain

https://developingmouse.brain-map.org/

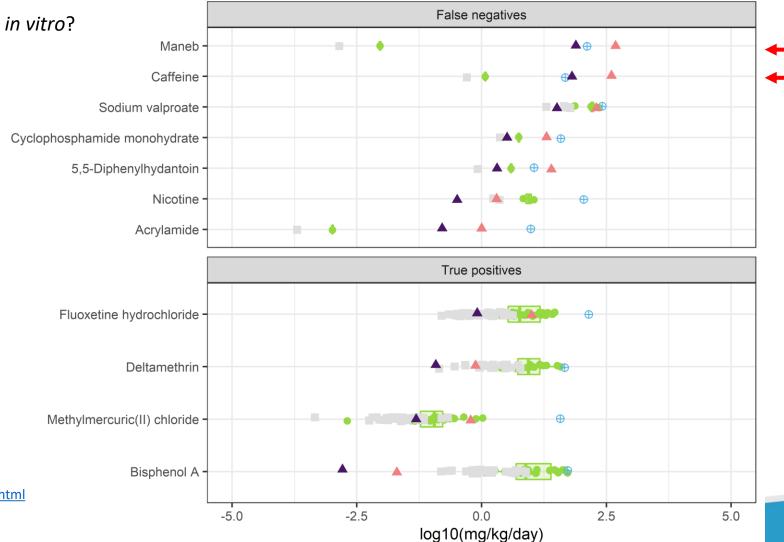

In situ hybridization

In vitro to in vivo extrapolation (IVIVE) using high-throughput toxicokinetic (HTTK) modeling

Are we testing at high enough concentrations in vitro?

AED: administered equivalent dose

HED: human equivalent dose


in vitro AED (human)

in vitro max tested AED (human)

in vivo dose (rodent)

in vitro AED (95th percentile human)

in vivo HED

'httk' R package: https://cran.r-project.org/web/packages/httk/index.html

20

Identifying gaps in the EPA DNT NAM battery

Is a false negative active in other DNT NAMs that are not included in the current EPA battery?

False negative: Maneb

Active in 3 DNT NAM endpoints outside the US EPA battery

- UKN4: Neurite area in LUHMES cells (human dopaminergic precursor)
- UKN5: Neurite area in peripheral nervous system (human derived dorsal root ganglia)
- UKN2: Neural crest cell (NCC) migration assay (human derived)

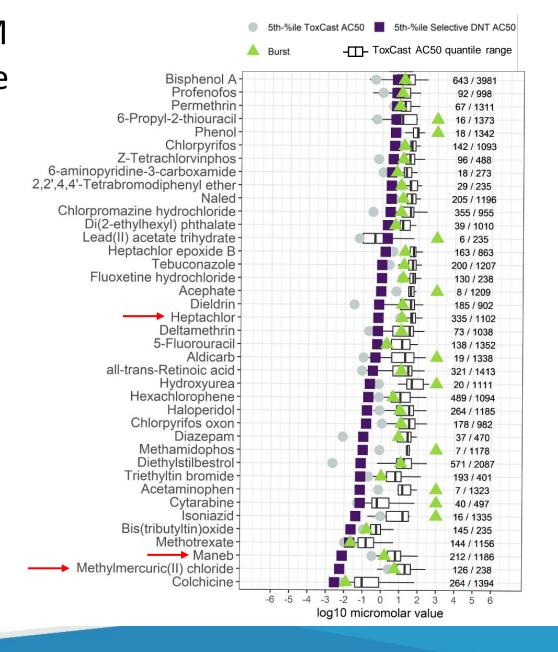
Results from the 2020 EFSA Scientific Report on DNT NAMs (uM)

_					_	٧١	,					
	compound name	CAS#	Selection criteria	UKN4 neurite area	UKN5 peripheral neurite area	NPC4 neurite length	NPC4 neurite area	/NCC	NPC2a72h (radial glia migr.)	(radial glia		NPC2c (oligo. migr.)
	Maneb	12427-38-2	in vivo positive	3.2	2	no hit	no hit	11.4	no hit	no hit	no hit	no hit

Modified from Masjothusmann et al. 2020

Process	Assays	References
Proliferation -	hNP1 NPC1	Harrill et al. (2018) Baumann et al. (2016) and Barenys et al.
Amentosia	UKN1 hNP1	(2017) Balmer et al. (2012)
Apoptosis Migration	NPC2	Harrill et al. (2018) Baumann et al. (2016) and Barenys et al. (2017)
	UKN2	Nyffeler et al. (2017)
Neuron differentiation	NPC3	Baumann et al. (2016) and Barenys et al. (2017)
Oligodendrocyte differentiation & maturation	NPC5/6	Baumann et al. (2016) and Barenys et al. (2017)
Neurite outgrowth 👈	r iCell gluta (hN2) UKN 4 & 5 NPC4 (rat)	Harrill et al. (2018) Krug et al. (2013) Baumann et al. (2016) and Barenys et al. (2017)
Synaptogenesis	Rat primary synaptogenesis	Harrill et al. (2018)
Network formation -	,	Brown et al. (2016) and Frank et al. (2018)

Sachana, M., et.al. 2019, Toxicological Sciences

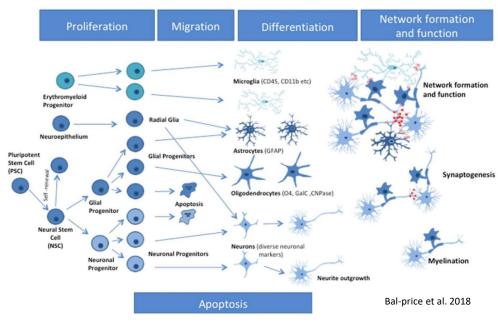

Comparison of *selective* DNT NAM activity to ToxCast/Tox21 database

ToxCast includes >1,500 assay endpoints and covers heterogeneous assay types, tissue sources, gene targets, and biological responses.

Examples of biological responses in ToxCast:

- Cell proliferation and death
- Cell differentiation
- Enzymatic activity
- Mitochondrial depolarization
- Protein stabilization
- Oxidative phosphorylation
- Reporter gene activation
- Receptor binding
- Receptor activity
- Metabolomic responses (stem cells)

https://comptox.epa.gov/dashboard/assay-endpoints


Conclusions

1) How does the DNT NAM battery collectively inform DNT-relevant bioactivity?

- Selective data is more informative in identifying differential patterns of functional bioactivity than non-selective data.
- Selective activity clusters do not appear to be explained by mode-of-action.

2) Can we build a model to classify compounds that demonstrate *in vivo* DNT bioactivity?

- Using the selectivity metric, DNT reference chemicals are classified with high specificity and moderate sensitivity.
- False negatives provide insight into experimental and biological limitations.

3) Can we identify gaps in the current DNT NAM battery and/or broader ToxCast/Tox21 database?

- Identified gaps in target receptor which may be associated with cell-type, species or developmental timepoint.
- Identified gaps in the current battery of DNT NAMs that appear to be covered by assays representing additional 'key events' in neurodevelopment.
- DNT NAMs data provides added value to ToxCast/ Tox21 database from the perspective of capturing health protective potencies.

Questions?

Acknowledgements

Tim Shafer
Katie Paul Friedman
Theresa Freudenrich
Kathleen Wallace
Cina Mack
Melissa Martin
Amy Carpenter
Seline Choo
Jackson Keever
Josh Harrill
Megan Culbreth

Contact Info:

Kelly Carstens, PhD U.S. Environmental Protection Agency Research Triangle Park, NC

Email: carstens.kelly@epa.gov

Office: 919-541-3834

Assay data:

Available in ToxCast invitrodb v 3.4

https://doi.org/10.23645/epacomptox.6062479.v6