

Investigating Specific Mechanisms of Toxicity Using Zebrafish Developmental **Assays and In Vitro High-Throughput Transcriptomics Analysis** B.R. Knapp¹, R.S. Judson², L.W. Taylor², N.C. Baker³, B.A. Chambers², S. Padilla⁴

¹ORISE ²US EPA: ORD/CCTE/BCTD/CTBB ³Leidos ⁴US EPA: ORD/CCTE/BCTD/RADB

Innovative Research for a Sustainable Future

Knapp.Bridget@epa.gov | 919-541-7802

ubMed Citation	
MGCR	Embryonic Development
619	246
301	231
108	8
34	8

Conclusions

- Our approach for identifying specific mechanisms of chemical toxicity is supported using statins, a class of known developmental toxicants.
- Testable hypotheses can be generated using this method regarding specific pathways leading to developmental defects.
- *In vitro* and literature mining data may help explain the results from zebrafish developmental toxicity assays.
- Results are potentially relevant to human developmental toxicity.

Further Research

Extend this methodology to find the specific mechanisms of other chemicals with selective toxicity.

Acknowledgements

We thank the Harrill lab at the US EPA for collection of cell data and those responsible for providing excellent oversight, maintenance, and upkeep of zebrafish facility. Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Cerivastatin sodium

