

Computational approaches to integrate DNT NAMs for fit-for-purpose identification of DNT hazard

Kelly Carstens, PhD

U.S. Environmental Protection Agency Research Triangle Park, NC

Email: carstens.kelly@epa.gov

ORCiD: 0000-0002-1746-5379

Office of Research and Development

Center for Computational Toxicology and Exposure Biomolecular and Computational Toxicology Division Computational Toxicology and Bioinformatics Branch

Conflict of Interest Statement

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Background on DNT NAMs

- Challenges in evaluating individual DNT NAMs:
 - No single in vitro screening assay can recapitulate all critical cellular events of neurodevelopment.
 - Some compounds may disrupt specific cellular events at different stages of development.
 - Some neural cell-types may be differentially sensitive to perturbation.
- DNT NAMs battery: multi-dimensional DNT screening assays that cover complex neurobiological space: temporal, different 'key events' in neurodevelopment, celltypes, and species.

Key functional processes guiding cortical development Migration Proliferation Synaptic pruning **Apoptosis** Input/output Dendritic development and synaptogenesis Adolescence 11-18 years Adulthood 36 Birth

Overview

- 1) How does a broad screening battery collectively inform DNT-relevant bioactivity?
- 2) Can we build a model to classify compounds that demonstrate in vivo DNT bioactivity?
- 3) Can we identify biological gaps in the current EPA DNT NAM battery and/or broader ToxCast/ Tox21 database?

Neurodevelopmental processes in the EPA DNT NAM battery

Bal-price et al. 2018

Table 2. Proposed Assays for Evaluation As an In Vitro DNT Battery

Process	Assays	References
Proliferation	hNP1 NPC1	Harrill et al. (2018) Baumann et al. (2016)
	Wildi	and Barenys et al. (2017)
	UKN1	Balmer et al. (2012)
Apoptosis -	hNP1	Harrill et al. (2018)
Migration	NPC2	Baumann et al. (2016) and Barenys et al. (2017)
	UKN2	Nyffeler et al. (2017)
Neuron differentiation	NPC3	Baumann et al. (2016) and Barenys et al. (2017)
Oligodendrocyte differentiation & maturation	NPC5/6	Baumann et al. (2016) and Barenys et al. (2017)
Neurite outgrowth -	iCell gluta (hN2)	Harrill et al. (2018)
	UKN 4 & 5 (rat)	Krug et al. (2013)
	NPC4	Baumann et al. (2016) and Barenys et al. (2017)
Synaptogenesis	Rat primary synaptogenesis	Harrill et al. (2018)
Network formation -	MEA-NFA (rat)	Brown et al. (2016) and Frank et al. (2018)

Sachana, M., et.al. 2019, Toxicological Sciences

Experimental models in the EPA DNT NAM battery

Microelectrode Array (MEA) Network Formation Assay (NFA)

High Content Imaging

Cell culture	Activity type	# endpoints
Primary rat cortical neurons (DIV 5, 7, 9, 12)	↓ ↑ General activity	4
	↓ ↑ Network connectivity	8
	↓ ↑ Bursting	5
	Cytotoxicity	2

Cell culture	Assays/ Key events	# endpoints
Primary rat cortical neurons	Neurite Outgrowth (NOG)	4
	Synaptogenesis and Neurite maturation	8
Human hN2 neural cells	NOG	4
Human hNP1 neuroprogenitors	Proliferation	3
	Apoptosis	2

Defining bioactivity using the ToxCast pipeline

Model fitting (constant, hill, gain-loss)

LVL 0 LVL 1 LVL 2 LVL 3 LVL 4 LVL 5 LVL 6 $\mu_i = 0$ $\mu_i = \frac{1}{1 + 10^{(ga - x_i)gw}}$ $g_i = \frac{1}{1 + 10^{(ga - x_i)gw}}$ $l_i = \frac{1}{1 + 10^{(x_i - la)lw}}$ $\mu_i = tp * g_i * l_i$

Select winning model and hit-calling

Number of bursting electrodes (down)

https://cran.r-project.org/web/packages/tcpl/vignettes/Data_processing.html#level-4

ToxCast pipeline (tcpl) R package (version 2.0.3 <u>publicly available</u>) (Filer et al. 2017)

How does a broad screening battery collectively inform DNT-relevant bioactivity?

NOG initiation, rat Synaptogenesis/maturation, rat NOG initiation, hN2 Apoptosis, hNP1

Activity Type

Proliferation, hNP1
Cytotoxicity MEA
General

MEA NFA '_up'

Bursting

Network Connectivity

NFA: Network formation assay

Synap: Synaptogenesis **NOG**: Neurite outgrowth

Prolif: Proliferation

Apop: Apoptosis

Selectivity: activity at concentrations lower than cytotoxicity

Calculating a *selectivity* metric

https://cran.r-project.org/web/packages/tcpl/vignettes/Data_processing.html#level-4

Acrylamide
Acrylamide
Sodium saccharin hydrate
Fluconazole
Diazoxon
Fosthiazate

High selectivity	Moderate/ Low selectivity
Synaptogenesis/ neurite maturation	Proliferation
NOG (hN2)	NOG (rat cortical)
	General neuronal activity/ network connectivity

Activity Type

NOG initiation, rat
Synaptogenesis/maturation, rat
NOG initiation, hN2
Apoptosis, hNP1
Proliferation, hNP1
Cytotoxicity MEA
General
MEA NFA '_up'
Bursting
Network Connectivity

NFA: Network formation assay

Synap: Synaptogenesis **NOG**: Neurite outgrowth

Prolif: Proliferation

AUC: Area under the curve

High selectivity	Moderate/ Low selectivity
Network connectivity	NOG (hN2)
General neuronal activity	Bursting

NFA: Network formation assay

NOG: Neurite outgrowth

Prolif: Proliferation

AUC: Area under the curve

Haloperidol: antipsychotic- Dopamine D₂

receptor antagonist

Deltamethrin: pyrethroid insecticidevoltage-gated sodium channels modulators

High selectivity	Moderate/ Low selectivity
Network connectivity	NOG (hN2)
General neuronal activity	Bursting

NFA: Network formation assay

NOG: Neurite outgrowth

Prolif: Proliferation

AUC: Area under the curve

Key findings

- Selective data is more informative in identifying differential patterns of functional bioactivity compared to non-selective data.
- A subset of compounds demonstrate cell-type specific effects (active in the NOG assay in the hN2 cell model but not rat cortical).
- Selective activity clusters do not appear to be explained by shared mode-of-action.

Can we build a model to classify compounds that demonstrate in vivo DNT bioactivity?

		In vivo evaluation chemicals	
		Positive (53) Mundy et al. 2015 Aschner et al. 2016 Harrill et al. 2018	Negative (13) Martin et al. <i>under revision</i>
	Cluster 1 Synap/ prolif/ NOG/ Neurite maturation	14	0
ioi	Cluster 2 General/ network/ bursting activity/ synap	11	0
Classification	Cluster 3 General/ network activity/ bursting/ synap/NOG	11	1
Clas	Cluster 4 General/ network activity/ bursting/ synap/ NOG	3	0
	Cluster 5 'Inactive/ equivocal'	14	12

	Positive	Negatives
Selective activity (Clusters 1,2,3,4)	True positive: 39	False positive:1
Inactive/ equivocal (Cluster 5)	False negative: 14	True Negative: 12

Selective
Sensitivity= 74%
Specificity= 92%

Non-selective
Sensitivity= 93%
Specificity= 69%

Can we identify biological gaps in the current EPA DNT NAM battery?

False negative: Caffeine

Caffeine targets adenosine receptor (adenosine A2a receptor)

Are we capturing the target mechanism in the DNT NAM battery?

https://developingmouse.brain-map.org/

In situ hybridization

In vitro to in vivo extrapolation (IVIVE) using high-throughput toxicokinetic (HTTK) modeling

Are we testing at high enough concentrations in vitro?

AED: administered equivalent dose

HED: human equivalent dose

man)

'httk' R package: https://cran.r-project.org/web/packages/httk/index.html

in vivo HED

Comparison of *selective* DNT NAM activity to ToxCast/Tox21 database

ToxCast includes >1,500 assay endpoints and covers heterogeneous assay types, tissue sources, gene targets, and biological responses.

Examples of biological responses in ToxCast:

- Cell proliferation and death
- Cell differentiation
- Enzymatic activity
- Mitochondrial depolarization
- Protein stabilization
- Oxidative phosphorylation
- Reporter gene activation
- Receptor binding
- Receptor activity
- Metabolomic responses (stem cells)

https://comptox.epa.gov/dashboard/assay-endpoints

Conclusions

1) How does the DNT NAM battery collectively inform DNT-relevant bioactivity?

- Selective data is more informative in identifying differential patterns of functional bioactivity than non-selective data.
- Selective activity clusters do not appear to be explained by mode-of-action.

2) Can we build a model to classify compounds that demonstrate *in vivo* DNT bioactivity?

- Using the selectivity metric, DNT reference chemicals are classified with high specificity and moderate sensitivity.
- False negatives provide insight into experimental and biological limitations.

3) Can we identify gaps in the current DNT NAM battery and/or broader ToxCast/Tox21 database?

- Identified gaps in target receptor which may be associated with cell-type, species or developmental timepoint.
- DNT NAMs data provides added value to ToxCast/ Tox21 database from the perspective of capturing health protective potencies.

Questions?

Acknowledgements

Tim Shafer
Katie Paul Friedman
Theresa Freudenrich
Kathleen Wallace
Cina Mack
Melissa Martin
Amy Carpenter
Seline Choo
Jackson Keever
Josh Harrill
Megan Culbreth

Contact Info:

Kelly Carstens, PhD U.S. Environmental Protection Agency Research Triangle Park, NC

Email: carstens.kelly@epa.gov

Office: 919-541-3834

Assay data:

Available in ToxCast invitrodb v 3.4

https://doi.org/10.23645/epacomptox.6062479.v6