

Variability in organ-level effects in repeat dose animal studies

Miran (MJ) Foster^{1,2*}, Richard S. Judson¹, R. Woodrow Setzer¹, Katie Paul Friedman¹,

¹Center for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC USA ; ²Oak Ridge Associated Universities

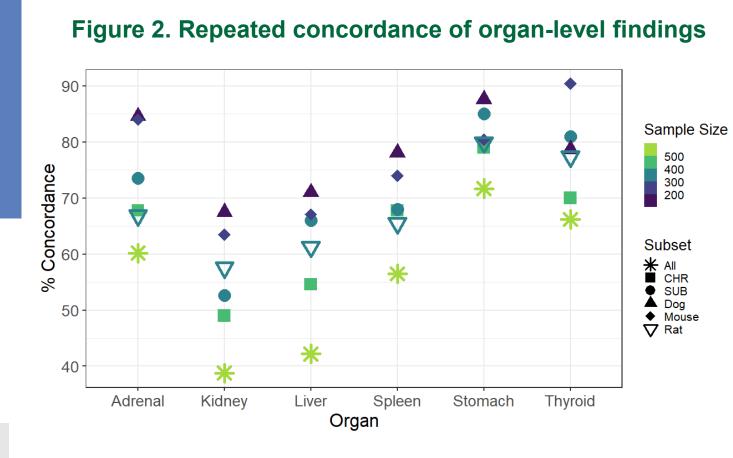
www.epa.gov

Building scientific confidence in the use of new approach methodologies (NAMs) in safety assessment may include performance comparison to *in vivo* study outcomes. This work defines the variability in organ-level effects and suggests qualitative and quantitative benchmarks for maximum NAM performance for prediction of organ-level effects in repeat dose studies of adult animals. Previous work suggests that the root mean square error (RMSE) for study-level lowest effect level (LEL) values (on a log₁₀-mg/kg/day basis) approaches 0.5 log₁₀-mg/kg/day†.

Observations of liver, kidney, stomach, spleen, thyroid and adrenal gland from the Toxicity Reference database (v2.0) were included in this analysis to understand the reproducibility of organ-level effects.

Abbreviations Key CHR=Chronic; SUB=Subchronic; LEL=Lowest effect level; AED=Administered equivalent dose

Figure 1. Workflow Full dataset by • Adults/F0 chemical • SAC, SUB, CHR only 538 chems 2289 chems 2289 chems	A Proportion of studies with concordant observations by endpoint target group (studies that measured endpoint target group >1)					
2.0 • Systemic endpoints 1142 chems • Oral Study replicate definition	By chemical and endpoint target group (538 chems)By chemical, endpoint target group, and species (dog: 169, mouse: 219, rat: 354)					
5960 studies • mg/kg/day • mg/kg/day Chem Study Species 1 1 CHR Rat 1 2 CHR Rat 1 3 CHR Mouse 1 4 SUB Mouse 2 1 CHR Rat	ChemStudyStudy TypeSpeciesEndpoint Target GroupChemStudyStudy TypeSpeciesEndpoint Target Group11CHRRatLiver11CHRRatLiver12CHRRatLiver12CHRRatLiver13CHRMouseLiver13CHRMouseLiver14SUBMouseLiver14SUBMouseLiver					
B Variance analysis on subsets by endpoint target group (studies that measured endpoint target group >1) Method: Multilinear regression (MLR) Descriptors used for LEL data by organ: • Study type • Species • Administration method	2 1 CHR Rat Liver 2 1 SAC Rat Liver By chemical, endpoint target group, and 'study type (dog: 169, mouse: 219, rat: 354) Image: Chem Study Study Endpoint Target Group 1 1 CHR Rat Liver 1 2 CHR Rat Liver 1 3 CHR Mouse Liver 1 4 SUB Mouse Liver 1 3AC Rat Liver 1 5AC Rat Liver					
 Dose number Dose spacing Substance purity Study year C Analysis of differences of SUB and CHR findings by endpoint target group, paired by chemical Method 1: Odds Ratios Method 2: Paired Randomization Test 	invitrodb v3.4 Find the second secon					
 For each of the 6 endpoint target groups and species, filter by chemicals that have both study types present. Calculate the odds ratio for CHR and SUB. Convert odds ratio to probability of a positive in CHR given a positive in SUB. For each of the 6 endpoint target groups, filter by chemicals that have both study types present. Calculate log10 differences of LELs. Perform a paired randomization test to check for significant differences in the distributions of SUB/CHR LELs. 	 Method: Paired Randomization Test For liver and kidney, gather chemicals that have both LEL and AED data. Calculate log10 differences between LELs/AEDs. Perform a paired randomization test to check for significant differences in the distributions of SUB/CHR LELs. 					


U.S. Environmental Protection Agenc Office of Research and Development

†Based on Pham LL, Watford S, Pradeep P, Martin MT, Thomas RS, Judson RS, Setzer RW, Paul Friedman K. Accepted. "Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic effect levels." Computational Toxicology. https://doi.org/10.1016/j.comtox.2020.100126

*Miran (MJ) Foster

This poster does not necessarily reflect EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

A: Qualitative reproducibility of organ-level effect observations in repeat dose studies of adult animals was 33-88%, depending on grouping.

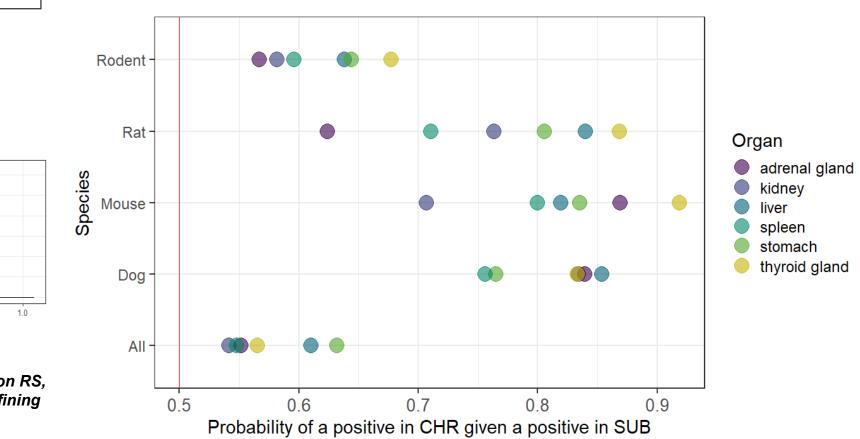
% Concordance = chemical with positive finding in all studies + chemicals with negative finding in all studies total chemicals tested

- · Organs associated with more negative chemicals (stomach, thyroid, adrenal) had higher rates of concordance in this range.
- Within-species concordance tended to than concordance

B: Variance in organ-level effects in repeat dose studies was smaller than study level variance, but the organ-level effect RMSE was similar to studylevel RMSE and approaches ~0.5 log₁₀-mg/kg/day.

Table 1. Results of MLR to estimate
unexplained and explained variance in organ
LELs

 $organLEL \sim b_0 + chemical * b_1 + species * b_2$ + study type $*b_3$ + administration method $* b_4 + dose spacing * b_5$ + number of dose levels $*b_6$ + study year

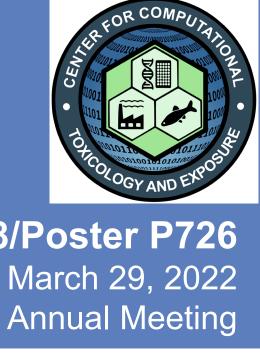

 $* b_7 + \%$ substance purity $* b_8$

Endpoint						
Target						%
Group	Chem	Ν	Var	MSE	RMSE	exp
adrenal	81	208	0.756	0.349	0.591	5
kidney	263	790	0.765	0.316	0.562	5
liver	359	1318	0.745	0.355	0.596	5
spleen	127	336	0.671	0.318	0.564	5
stomach	55	146	0.553	0.173	0.416	6
thyroid	73	198	0.721	0.378	0.615	4

Chems = # chemicals; N = number of studies; Var = total variance; MSE = mean square error on the model; RMSE = root residual mean square error; % var explained = % of total variance explained.by study descriptors

C. Organ-level findings in SUB appear qualitatively predictive of organlevel findings in CHR studies (ignoring adversity).

Figure 3. Probability of a positive CHR outcome by organ/species subgroups

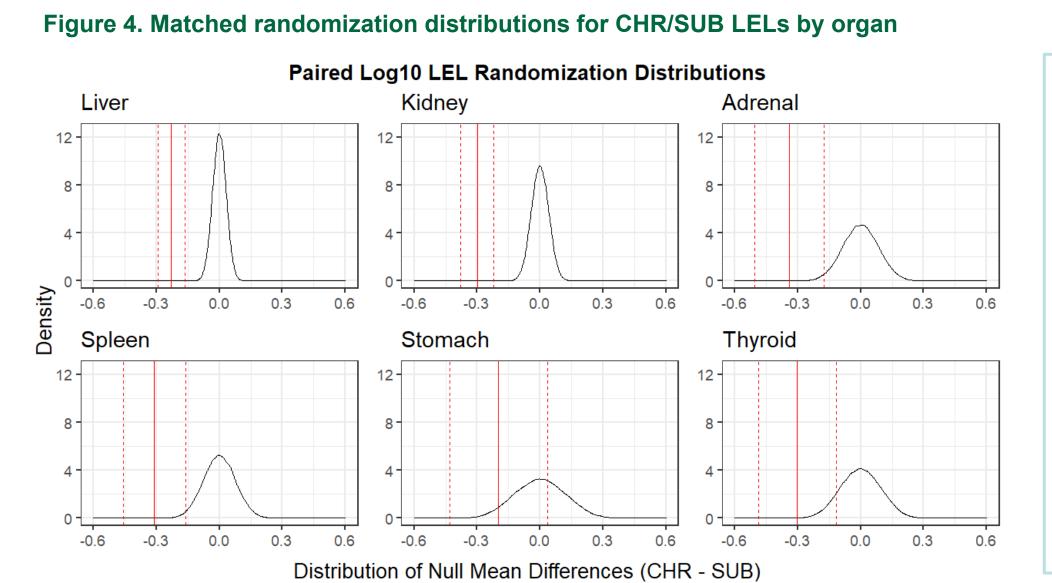


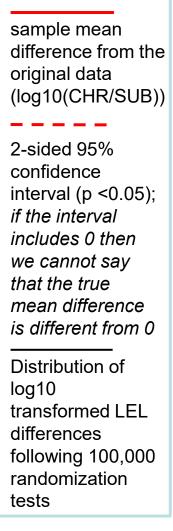
• Odds ratios are converted to probabilities using the formula: $\cap R$

$$P = \frac{OR}{1 + OR}$$

- represents 0.5 The line red probability, which would indicate having information about SUB would inform CHR no better than random. Note that "All" and "Rodent" sample sizes were significantly reduced because of the matching procedure. • An "All" chemical must have been present in all species groups and
- both study types.

Abstract 4028/Poster P726

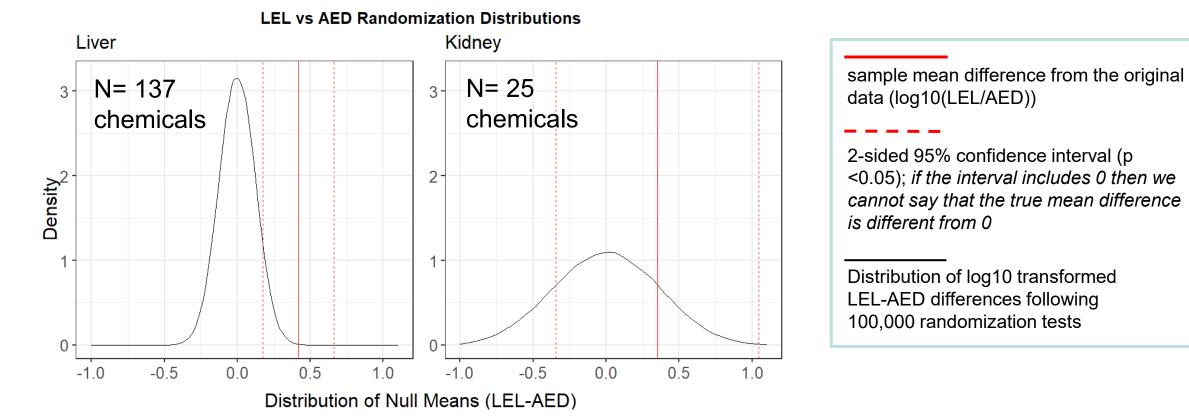

Society of Toxicology Virtual Annual Meeting


I foster.miran@epa.gov

- C. SUB organ-level LEL values are typically within 0.5 log10-mg/kg/day of CHR organ-level LEL values; for some organs, available data suggests that SUB and CHR studies produce similar LEL values.

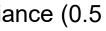
- within-study

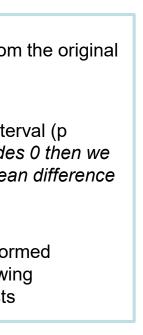
 - % var plained 53.8 58.7 52.3 52.6 68.7 47.6



- Liver, kidney, spleen, and thyroid have significantly different log10 LEL difference from 0 at the α = 0.05 level [95% confidence interval (red dotted lines) does not include 0]
- Differences between CHR and SUB organ-level LELs may be within estimates of replicate study variance (0.5 log10-mg/kg/day).

D. In vivo LELs are higher than bioactivity-based AEDs on average for liver, and they may be within 0.5 \log_{10} -mg/kg/day for liver and kidney predictions.


Figure 5. Matched randomization distributions for LEL/AED differences


- Liver LEL and AED values are significantly different at the α = 0.05 level [95% confidence interval (red dotted lines) does not include 0], but the difference is well within estimates of variance in organ-level LELs (~0.5 log10-mg/kg/day).
- No significant difference for LEL-AED in kidney, the interval overlaps both 0 and 0.5, but N is small
- Chemical diversity is limited for this preliminary result. The primary ToxPrint chemotypes represented are benzene ring and other aromatic bonds and chains.

