Identification of Chemicals Associated with Retinoid Signaling Pathway Disturbance and Skeletal Dysmorphogenesis Through Predictive Computational Toxicology Models

Jocylin D. Pierro, Ph.D.

CTBB/BCTD/CCTE/ORD/USEPA

4/7/22

Disclaimer:

This presentation does not represent the official views of EPA or any government agency.

Introduction

- All-Trans Retinoic Acid (ATRA) is biologically active form of retinol (Vitamin A) and necessary to normal development in all tissues
- ATRA was the first signal characterized as a morphogenetic signal in vertebrate embryos
- ATRA has cross-talk with key morpho-regulatory pathways (SHH, FGF, WNT, TGFbeta, RTKs, ...) and can be disrupted by genetic or environmental factors
- Over 500 ATRA-responsive genes regulate diverse biological processes important for development at the cellular, tissue and organ levels

ATRA Signaling Pathway

Adapted from Niederreither and Dolle, 2008

SOURCE: Rhinn et al. (2011) PNAS

SOURCE: Rhinn and Dolle (2012)

Deficient ATRA production

In Vivo Results of ATRA Excess and Deficiency

- Without Retinoic Acid (RA) primarily have defects in anterior features
- RA needed for face and upper limb development

Deficient ATRA breakdown

- Excess RA results in posterior defects
- Caudal deficiencies

ATRA Thresholds: Teratogenesis and Morphogenetic Signaling

Dosimetric	Conc.	Indication	Reference
baseline ATRA (5 somite zebrafish embryo)	< 1 nM	non-morphogenetic	(Shimozono, limura et al. 2013)
maternal serum (animal study)	1.7 nM	non-teratogenic	(<u>Daston, Beyer et al. 2014</u>)
devTOX ^{qp} assay (pluripotent hESC)	3.0 nM	teratogenic threshold	(Zurlinden, Saili et al. 2020)
normal plasma concentration	5.0 nM	physiological (adult)	(Napoli, Posch et al. 1991)
axial gradient (5 somite zebrafish embryo)	6.0 nM	morphogenetic signal	(Shimozono, limura et al. 2013)
endodermal differentiation (h-iPSC)	17 nM	toxicological tipping point	(Saili, Antonijevic et al. 2019)
devTOX ^{qp} assay (pluripotent h-iPSC)	19 nM	DevTox potential	(Palmer, Smith et al. 2017)
genetic perturbation (mouse)	30 nM	altered homeostasis	(Helms, Thaller et al. 1994)
maternal serum (animal study)	30 nM	teratogenic potential	(Daston, Beyer et al. 2014)
limb-bud (GD 10.5 mouse embryo)	30 nM	physiological (embryo)	(Horton and Maden 1995)
pharmacological kinetics	1,000 nM	efficacious (therapeutic)	(Helms, Thaller et al. 1994)
limb-bud (GD 11 mouse embryo)	1,500 nM	weakly teratogenic dose	(Satre and Kochhar 1989)
limb-bud (GD 10.5 mouse embryo)	12,500 nM	fully teratogenic dose	(Horton and Maden 1995)

Knudsen et al., Reprod Toxicol (2021) – special issue devoted to retinoid signaling (Guest Editor: H Håkansson).

- Number of assays in retinoid pathway available in ToxCast/Tox21

 New Approach Methods (NAMs)
- Number of skeletal defects can be defined from the ToxRefDB and Literature → Adverse Outcome Pathways (AOPs)
- NAM-based AOPs provide a weight-of-evidence approach for predictive toxicology of ATRA-dependent skeletal dysmorphogenesis

Approach:

Derive multi-database models from ToxCast, Tox21, ToxRefDB, literature mining, and AOP frameworks for

chemical disruption of retinoid signaling on altered skeletal development

Workflow

Toxicity Reference Database (ToxRefDB v1)

https://github.com/USEPA/CompTox-ToxRefDB (2,946 prenatal developmental toxicity studies with adverse skeletal outcome)

57,198 composite skeletal defects across 363 chemicals rat (31,1661), mouse (1,232), rabbit (16,375), chinchilla (368), other/unspecified (7562))

Extraction of ToxCast Chemicals

AbstractSifter (Baker et al., 2017) deduced 7 non-ToxRefDB chemicals of 42 benchmark (Zurlinden et al., 2020) ToxCast chemicals demonstrate connection to skeletal defects Regional Annotation for 370 chemicals Appendicular (8,611): autopod (7,310), stylopod (969), zeugopod (332); Axial (34,122): cauda (2,224), thoracic cage (19,132), vertebra (12,766); Cranial (7,658): neurocranium (5,037),

Cranial (7,658): neurocranium (5,037), orofacial (2,426), viscerocranium (195); Other (6,807): unspecified (6,807)

CompTox Chemicals Dashboard

neurocranium

orofacial

viscerocranium

https://comptox.epa.gov/dashboard 374 chemicals (of 8,079 tested chemicals) selected due to bioactivity across 1 or more of 13 assays for relevant ATRA pathway nodes (Knudsen *et al.*, 2020);

Criteria for positivity called active based on efficacy and potency

vertebra

thoracic

cage

stylopod

8

cauda

zeugopod

autopod

Mapping HTS Data

Comparison of Data Sets' Chemicals

Compared 374 compounds that induced bioactivity in

ATRA pathways and 363 ToxRefDB or 7

Benchmark ToxCast chemicals associated with skeletal defects to ascertain common chemicals

Dataset for Mechanistic Modeling

322

Chemicals
Associated with
Developmental
Skeletal Defects

326

Chemicals with Bioactivity on ATRA Pathway Nodes

AOP Elucidation

Clockwise Activity 3-5:30 o'clock DR5 & RARA

(Cluster A)

Hierarchical Clustering

- 5:30-8 o'clock DR5 (Cluster A)
 - 8:30-9:30 o'clock RXRA/B and RARA/B (Cluster B)
- RXRA/B, and DR5 (Cluster C) 10-1 o'clock CYP, DR5, and

10 o'clock Tox21, RARA/B,

- RARA (Cluster D)
- 1-3 o'clock CYP (Cluster E)

Chemical Summary

In vitro
ToxCast/Tox21
(4500)

28 Retinoid Pathway Reference
Chemicals from Protein Data Bank,
ChEMBL, ToxCast, and biomedical
literature in PubMed were consistent
with other databases.

- 1114 Chemicals Tested in vivo recorded in ToxRefDB
- 318 ToxRefDB chemicals associated with in vivo skeletal defects
- 4500 Chemicals Tested *in vitro* recorded in ToxCast/Tox21
- 322 ToxCast & ToxRefDB chemicals associated with *in vitro* ATRA pathway bioactivity
- 28 chemicals found in 3 databases establishing association with skeletal defects and ATRA path bioactivity

20 Unique Chemicals	28 Chemicals in Lit		
Triphenyltin hydroxide	Allethrin	Retinol	
Raloxifene hydrochloride	All-Trans Retinoic Acid	SSR126768	
Forchlorfenuron	Bentazone	Tebufenpyrad	
Lindane	Buprofezin	Thiazopyr	
Linuron	Chlorothalonil	Triadimefon	
S-Bioallethrin	Deltamethrin	Tributyltetradecylph sphonium chloride	
Iprodione	Difenoconazole	Triflumizole	
Phorate	Diniconazole	Triticonazole	
Fipronil	Endosulfan		

Endrin Fenpyroximate (Z,E)

Fluoxastrobin

Flusilazole

Imazalil N-Phenyl-1,4-

benzenediamine

Oryzalin

Oxadiazon

Propargite
Pyraclostrobin

Pyridaben

Aspirin

Cyfluthrin N,N-

Dimethylformamide

Clodinafop-propargyl

Propiconazole

Myclobutanil

Bronopol

Etoxazole

Tetraconazole

Pyrimethamine

Bromuconazole

Potential AOPs for ATRA-Skeletal Defects

MIE	KE1	KE2	KE3	KE4	АО
Loss of CYP26 activity	Increase in ATRA	Decrease in FGF8 signaling	Modification of axial patterning genes	Alterations in cartilage, rudiments, and ossification	Misshapen, poorly ossified, and missing thoracic cage
				4	8% Thoracic Cag
Overactivation of RARs	Increased transactivation of RARE	Downregulation of FGF8 expression in the apical ectoderm	Activation of apoptotic pathway	Excessive interdigital cell death (ICD)	Truncation of the autopod

6% Autopod

These do not reflect complete manifestation of genetic models; these are partial effects on the system

Cross-Species Extrapolation

- *In vitro* to *in vivo* extrapolation (IVIVE)
 - ➤ High-Throughput Toxicokinetics (httk)

[Chang et al. 2022; Wambaugh 2016 with updates]

- Human extrapolation required for in vivo data
- Uncertainty factors to incorporate, or not?
- Retinoid pathway well conserved, human likely consistent

Summary and Conclusions

- 48 ToxCast/Tox21/ToxRefDB chemicals were identified with potent effects on ATRA pathway assays and fetal skeletal defects
- Hierarchy of in vitro effects: DR5 (bioindicator of ATRA transactivation) → CYP
 (CYP26 surrogate inhibition) → RAR-dependent transactivation
- Thoracic cage defects was the first and most frequent skeletal outcomes in this model, followed by other axial defects (vertebra and cauda), cranial and limb defects
- This data supports the hypothesis that NAM-based AOPs provide a weight-ofevidence approach for predictive toxicology of ATRA-dependent skeletal dysmorphogenesis

Acknowledgments

US EPA, CCTE

Nancy Baker, Leidos Richard Judson Thomas Knudsen Jocylin Pierro Ann Richard Laura Taylor

Eurofins

Bhavesh Ahir

NTP/NIEHS

Nicole Kleinstreuer Xiaoqing Chang

NIH/NCATS

Srilatha Sakamuru Menghang Xia

NCTR/FDA

Annie Lumen Miao Li

OECD

Patience Browne

Questions?

References

- 1. Knudsen *et al.* Retinoid Signaling in Skeletal Development: Scoping the System for Predictive Toxicology. Reprod. Toxicol. 2021.
- 2. Organisation for Economic Co-operation and Development (OECD). Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97). 2021. Work in progress.
- 3. Pierro et al. Multi-Database Review of Retinoid Signaling in Skeletal Development for Adverse Outcome Pathways and Computational Toxicology Applications. 2021. Work in progress.
- 4. Baker *et al.* Identifying Candidate Reference Chemicals for *in vitro* Testing of the Retinoid Pathway. 2021. *Work in Progress.*
- 5. Niederreithe *et al.* Retinoic acid in development: towards an integrated view. Nat Rev Genet. 2008 Jul; 9(7):541-53. doi: 10.1038/nrg2340. Epub 2008 Jun 10. PMID: 18542081.
- 6. Metzler, M. A. et al. "Enzymatic Metabolism of Vitamin A in Developing Vertebrate Embryos." Nutrients. 2016; 8(12).
- 7. F. Di Renzo *et al.* Citral, an inhibitor of retinoic acid synthesis, attenuates the frequency and severity of branchial arch abnormalities induced by triazole-derivative fluconazole in rat embryos cultured in vitro, Reprod. Toxicol. 2007; 24(3–4), 326–332. PMID:17875381
- 8. F. Di Renzo *et al.* Molecular mechanism of teratogenic effects induced by the fungicide triadimefon: study of the expression of TGF-beta mRNA and TGF-beta and CRABPI proteins during rat in vitro development, Toxicol. Appl. Pharmacol. (2009); 234(1), 107–116. PMID:18976680.
- 9. F. Di Renzo *et al.* Early genetic control of craniofacial development is affected by the in vitro exposure of rat embryos to the fungicide triadimefon, Birth Defects Res. B Dev. Reprod. Toxicol. 2011; 92(1), 77–81. PMID:21254369.

References

- 1. E.C. Tonk, J.L. Pennings, A.H. Piersma, An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis, Reprod. Toxicol. 55 (2015) 104–113. PMID:25461899.
- 2. E. Menegola, M.L. Broccia, F. Di Renzo, E. Giavini, Antifungal triazoles induce malformations in vitro, Reprod. Toxicol. 15 (4) (2001) 421–427. PMID: 11489598.
- 3. G. Lemaire, P. Balaguer, S. Michel, R. Rahmani, Activation of retinoic acid receptor-dependent transcription by organochlorine pesticides, Toxicol. Appl. Pharmacol. 202 (1) (2005) 38–49. PMID:15589975.
- 4. I. Strate, T.H. Min, D. Iliev, E.M. Pera, Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system, Dev. 136 (3) (2009) 461–472. PMID:19141675.
- 5. M. Rhinn, P. Dolle, Retinoic acid signalling during development, Dev. 139 (5) (2012) 843–858. PMID:22318625.
- 6. N. Baker, A. Boobis, L. Burgoon, E. Carney, R. Currie, E. Fritsche, T. Knudsen, M. Laffont, A.H. Piersma, A. Poole, S. Schneider, G. Daston, Building a developmental toxicity ontology, Birth Defects Res. 110 (6) (2018) 502–518. PMID:29383852.
- 7. R. Kamata, F. Shiraishi, J. Nishikawa, J. Yonemoto, H. Shiraishi, Screening and detection of the in vitro agonistic activity of xenobiotics on the retinoic acid receptor, Toxicol. In Vitro 22 (4) (2008) 1050–1061. PMID:18289828.
- 8. S. Shimozono, T. Iimura, T. Kitaguchi, S. Higashijima, A. Miyawaki, Visualization of an endogenous retinoic acid gradient across embryonic development, Nature 496 (7445) (2013) 363–366. PMID:23563268.
- 9. T. limura, N. Denans, O. Pourquie, Establishment of Hox vertebral identities in the embryonic spine precursors, Curr. Top. Dev. Biol. 88 (2009) 201–234. PMID: 19651306.

