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moieties allowing for fast entry into the Krebs cycle, or both

 Properties tend to be simple

 Water solubility is a function of relatively few molecular interactions

 I’m just going to call it “Structure-Activity” from this point on
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MAIS POURQUOIS?

 So Why Model?
 There are a lot of chemicals and experimenting explicitly 

can be resource prohibitive
 Models are cheap and reduce in vivo testing

 Experiments are imperfect
 Models shine light on data points that are 

mathematically abnormal (random errors) and can 
detect signals that indicate systematic errors

 Large Structure-Activity data is structured but often 
beyond human comprehension
 Models are mathematical tools to investigate the 

patterns within data



HOW DO WE 
MODEL QSA 
RELATIONSHIPS?

“LD50” – The dosage at which a compound 
was found to kill 50% of rat model organisms

“Water solubility” – Measure of the amount 
of a substance that can dissolve in water at a 
specific temperature

Datasets



THE OLD WAYS

 Historically, QSAR has applied one-line equations with 
relatively few fitting parameters

 Linear models

 Additive Expressions

 Logistic regression/classification

 “High bias, low variance”

 These models are simple to calculate

 These models tend to be easily interpretable



AND THE NEW

 Modern approaches use ‘machine learning methods’, which 
require larger memory resources, many more fitting 
parameters, or both

 K-Nearest Neighbor

 Decision Trees, Random Forests & Gradient Boosted Trees

 Support Vector Machines

 Neural Networks & Representation Learning

 “Low bias, high variance”

 Computationally expensive

 “Black Box” difficult to interpret



JUDGING A 
MODEL



MACHINE LEARNING HAS INTRODUCED NEW CONSIDERATIONS

• This indicates how presumptive our 
model is about the shape of the dataBias

• This indicates how our model generalizes 
across the space of possible inputsVariance



BIAS & VARIANCE

 We can think of these as characterizing of how 
much ‘information’ about the training set a 
model learns

 High variance models learn a lot of information –
possibly including noise or false signals!

 High bias models learn relatively little information 
– you had better hope your model’s fixed ‘shape’ 
is appropriate for the data!

 Generally, decreasing bias increases variance and 
vice-versa

 The ideal model has low bias and low variance

 We control these through hyperparameters



BIAS & VARIANCE – HIGH BIAS

 Too Biased To See The Truth

 We have ‘assumed’ too much by asserting our data 
can be described with decision trees of a relatively 
shallow depth of 2

 The performance on both internal and external sets 
are relatively poor

 The ‘streaking’ we see is due to the forest having too 
few terminal ensembles of points from which to 
derive an average 



BIAS & VARIANCE – HIGH VARIANCE

 A Manic Pixie Dream Model

 Wow! These scores are so much better!

 The behavior between the internal set (blue) and 
external set (red) is notably different

 The red set was taken at random from the same region 
of chemical space as the blue set…what would happen 
if we go even slightly outside that region…?

 Intimately tied to the concept of the “Applicability 
Domain”



BIAS & VARIANCE – THE STABLE SOLUTION

 Low Bias, Low Variance

 The external score (red) is the same

 Whatever our model learned, it seems to behave 
pretty similarly between the internal data and the 
external data

 We allocated enough information capacity to pick up 
the major signals driving the data prediction without 
allocating so much we learned every quirk of the 
training set



IS HIGH VARIANCE 
WORTH IT FOR 
HIGHER EXTERNAL 
PERFORMANCE?

Jésus tenté dans le désert. James Tissot. {{PD-US-expired}} – published anywhere (or registered with the U.S. Copyright Office) before 1927 and public domain in the U.S.

https://commons.wikimedia.org/wiki/Template:PD-US-expired


CAN AN 
ALGORITHM 
MAKE BREAD 
FROM STONE?



BREIMAN’S METHOD

 Overgrow Trees, Withhold Fertilizer

 Bootstrap 66% of the training set for each tree

 Have enough trees that each training point is still represented

 Allow the trees to grow to infinite depth

 The idea is that each tree overlearns only a portion of the training data, 
inoculating it against overfitting it

 Grow a large enough forest that the solution converges

 This creates a model that is more interpolative, and less memorization-
based



EMBEDDING CHEMICAL SPACE
“EMBEDDING” – A LOW DIMENSIONAL REPRESENTATION OF A HIGH DIMENSIONAL SPACE

By 4edges - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=73850232



HOW DO WE BEST DESCRIBE CHEMICAL SPACE?

 What do we show a model as we try to teach it a QSAR?

 We can show it as much as possible, but then we cede control of what it 
learns and how to interpret it

 We can show it relatively few things, possibly compromising what it can 
detect but letting us more easily understand what it says

 This is our single greatest moment to enforce interpretability

 A representation like ToxPrints or other fragment count representations have 
clear, interpretable chemical meanings, but this may limit the completeness of 
our description

 A representation like T.E.S.T. or PaDEL is mathematically exhaustive in its 
description of structure, but can result in descriptors that are extremely 
abstract and difficult to relate to intuitive chemistries



HOW DO WE BEST DESCRIBE CHEMICAL SPACE?

 “Show it everything”

 PaDEL descriptors – 1875 Descriptors

 T.E.S.T. descriptors – 979 Descriptors

 Advantages

 Often higher performance statistics

 If there’s signal, that many descriptors will probably cover it

 Disadvantages

 The curse of dimensionality

 Translating the transmundane (it’s harder to interpret)

 If there’s signal, that many descriptors will probably cover it



DO WE NEED ALL 
THOSE 
DESCRIPTORS?  Not Generally

 More descriptors can increase overfitting due to more opportunities for 
erroneous patterns to emerge

 Additional descriptors should add novel information, not repeat existing 
information

 Mutual information is a robust but computationally expensive way to 
explore these relationships



DEVISING AN EMBEDDING

 Eliminate constant descriptors

 They contain no information

 Eliminate highly colinear descriptors

 These restate information

 Train a random forest on the remaining descriptors

 Converge it properly, as the descriptors extracted from 
an overfit model do not necessarily indicate a general 
solution

 Pick the N most important descriptors, or the descriptors 
that are above some threshold fraction of the importance of 
the most important descriptor

 Permutative Importance

 Mean decrease in impurity

 Do the descriptors informatically overlap too much?



A POSTERIORI MECHANISMS

 Mechanisms for machine learning models are difficult to rigorously 
state

 The best process for reconciling mechanism with chemical 
intuition is analyzing the descriptors it utilizes

 Water solubility random forest model heavily weights ALOGP, the 
Ghose-Crippen octanol water coefficient, as the most important

 This makes a lot of sense and can be considered an instance 
of transferring the information from the Ghose-Crippen 
model into the random forest model

 The remaining descriptors used are

 Molecular multiple path counts – statements of bond order 
topology encoding information about aromaticity

 Mean atomic van der Waals volume – affects exposed 
potential energy surface area defining interactions with 
solvent

 Maximum hydrogen E-state value in molecule – rough 
statement of electronegativity possibility relating to polarity



EXTERNAL 
TESTING

 Up until now, we’ve engaged in the common literature practice of 
using an external set randomly selected from the original data pool

 Can we rationally create a split that tests data external to the 
chemical space that was learned?

 Relatively novel territory



EXTERNAL 
TESTING

 The mosaic split uses affinity propagation clustering to isolate 
collections of samples in the embedded chemical space

 Those clusters can be recombined to create training and test sets

 This directly favors chemical dissimilarity between the sets



EXTERNAL TESTING

Random Split Mosaic Split

Figure credit: Dr. Charles Lowe



EXTERNAL TESTING



REPORTING

 QMRF – QSAR Model Report Format

 The gold standard of reporting information on a QSAR model

 Sections are created around the OECD principles

 OECD Principles

 1. Define Endpoint

 2. Define Algorithm

 3. Define Applicability Domain

 4. Internal & External Validation

 5. Mechanistic Interpretation



THE MODEL PROCESS
 Putting It All Together 

 Select a structural representation that provides the desired balance of 
interpretability and completeness of  description

 Filter descriptors for redundant information and apply MDI selection to 
derive an embedding

 Control the variance and bias through hyperparameters to converge a 
solution that performs similarly on internal and external data

 A posteriori a mechanism based on the importance of the descriptors to the 
model

 Run tests to consider external prediction ability of the model

 Report the details in QMRF for publication
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