

CompTox Chemicals Dashboard

Nisha S. Sipes, PhD

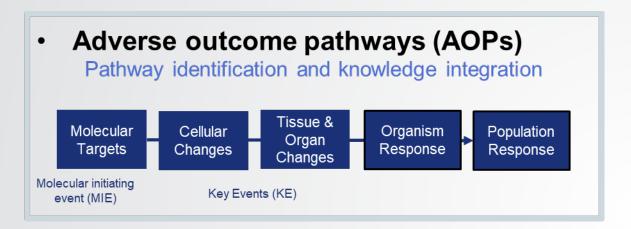
US EPA, Office of Research and Development, Center for Computational Toxicology and Exposure

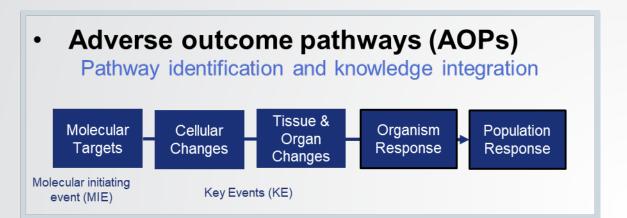
Presented at the Tribal Environmental Summit

May 5, 2022

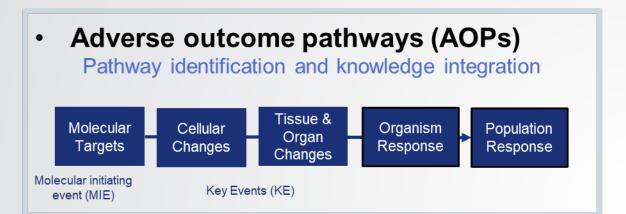
Sipes.Nisha@epa.gov

Outline

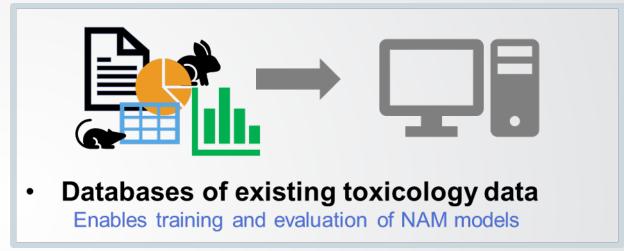

- Intro to Computational Toxicology
- Vision of the Dashboard
- CompTox Chemicals Dashboard Navigation
 - Simple search
 - Batch search
- Case Example for Clean Water Act Programs


Computational Toxicology

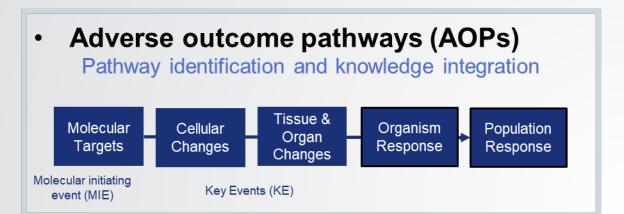
- Developing, gathering, integrating, and evaluating data and information using mathematical and computer-based approaches to better understand chemical hazards and risks to human health and the environment
- Typically refers to non-in vivo toxicological tools and approaches
 - New Approach Methodologies (NAMs)—in silico, in vitro, hazard + exposure
- Some tools and approaches are already used in hazard and/or risk assessments
 - E.g., Quantitative Structure-Activity Relationships (QSARs)

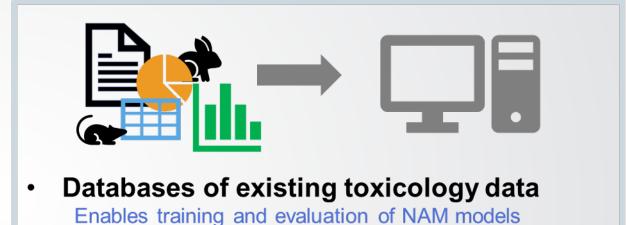

- In vitro assays
 - Broad / screening (transcriptomics, cell painting)
 - Targeted (receptors, enzymes)
 - In vitro PODs, modes/mechanisms of action
- In vitro toxicokinetics

Allow conversion of an in vitro POD to in vivo (IVIVE)



- In vitro assays
 - Broad / screening (transcriptomics, cell painting)
 - Targeted (receptors, enzymes)
 - In vitro PODs, modes/mechanisms of action
- In vitro toxicokinetics


Allow conversion of an in vitro POD to in vivo (IVIVE)

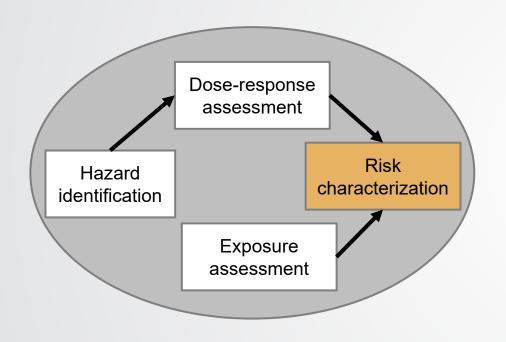

- In vitro assays
 - Broad / screening (transcriptomics, cell painting)
 - Targeted (receptors, enzymes)
 - In vitro PODs, modes/mechanisms of action
- In vitro toxicokinetics

Allow conversion of an in vitro POD to in vivo (IVIVE)

Image: https://ncats.nih.gov/news/releases/2018/tox21-strategic-plan

- In silico (e.g., QSAR and read-across)
 Estimate effects and doses
- Computer models

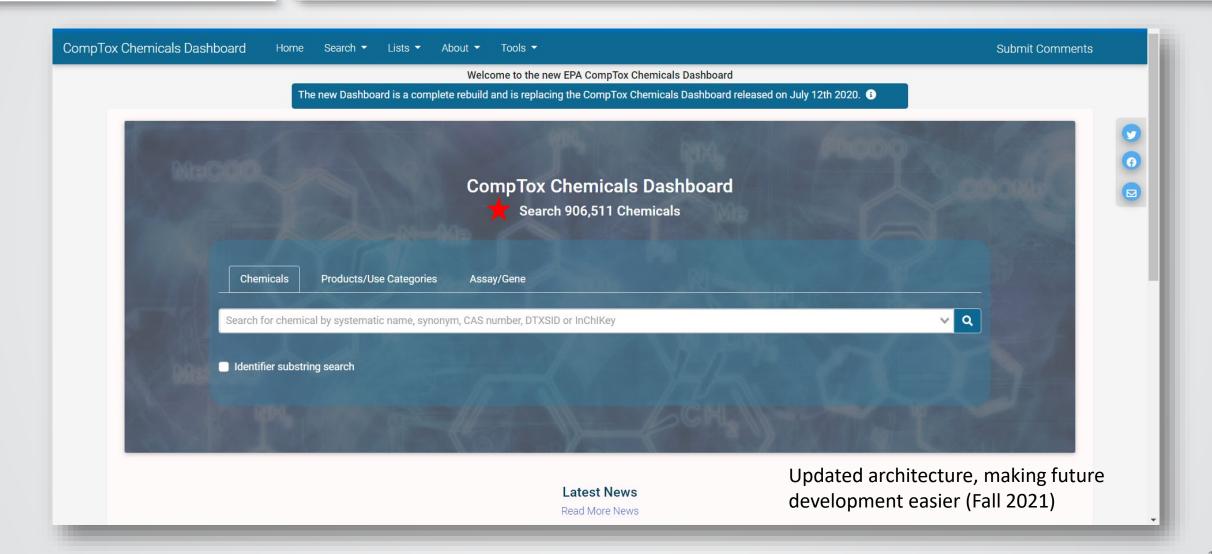
Integrate multiple in silico and in vitro data streams


Vision of the CompTox Chemicals Dashboard

- Develop public access for environmental chemical data to support EPA and partner decision making:
 - Centralized location for relevant chemical data
 - Chemistry, exposure, hazard and dosimetry
 - Combination of existing data and predictive models
 - Publicly accessible, periodically updated, curated

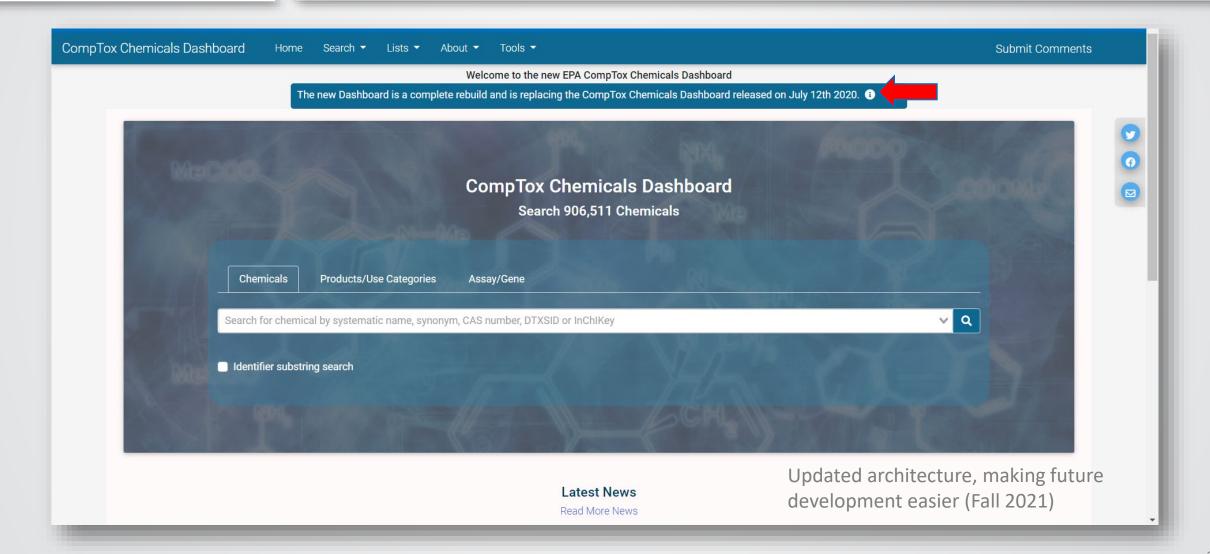
 Easy access to data improves efficiency and ultimately accelerates chemical risk assessment

Dashboard Data Contents



- Chemical characterization
- Hazard: safety classifications, human health & ecological data, in vivo animal data, biological targets (effect), doseresponse characterization (dose),
- Toxicokinetics
- Exposure: exposure levels

+ online web applications: chemical similarity search, read-across, literature search



https://comptox.epa.gov/dashboard/

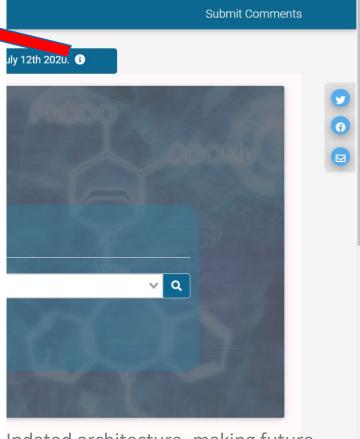
Clickable informational icon

CompTox Chemical

Important Dashboard Information

Provides the latest important information

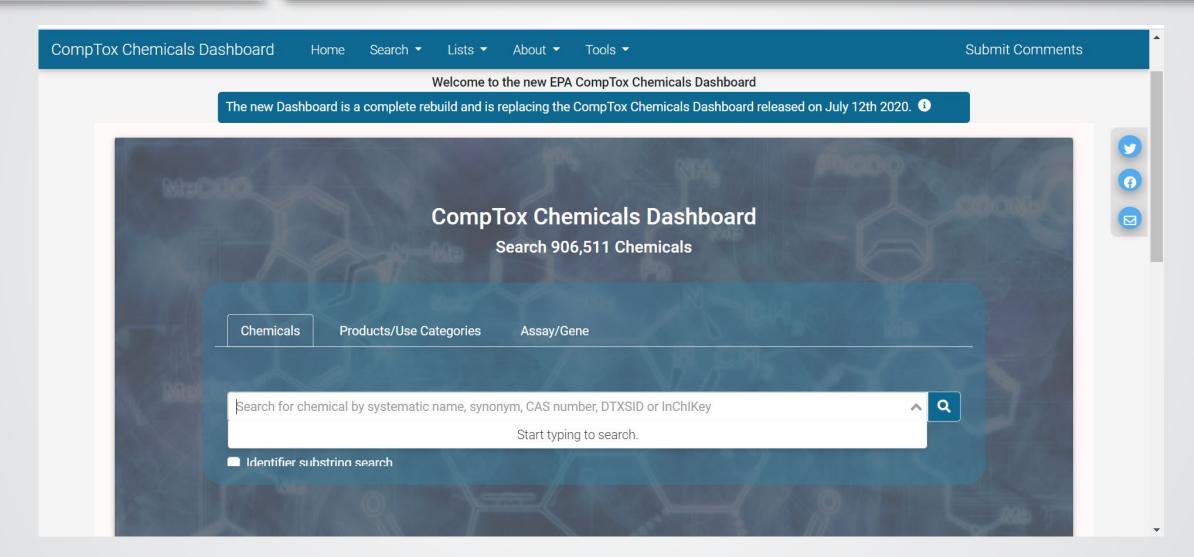
Check out the new CCD Dashboard About Page for details about the complete CCD Users Manual can help get you started.


Please log issues or questions using the Submit Comments function/button in the Men-

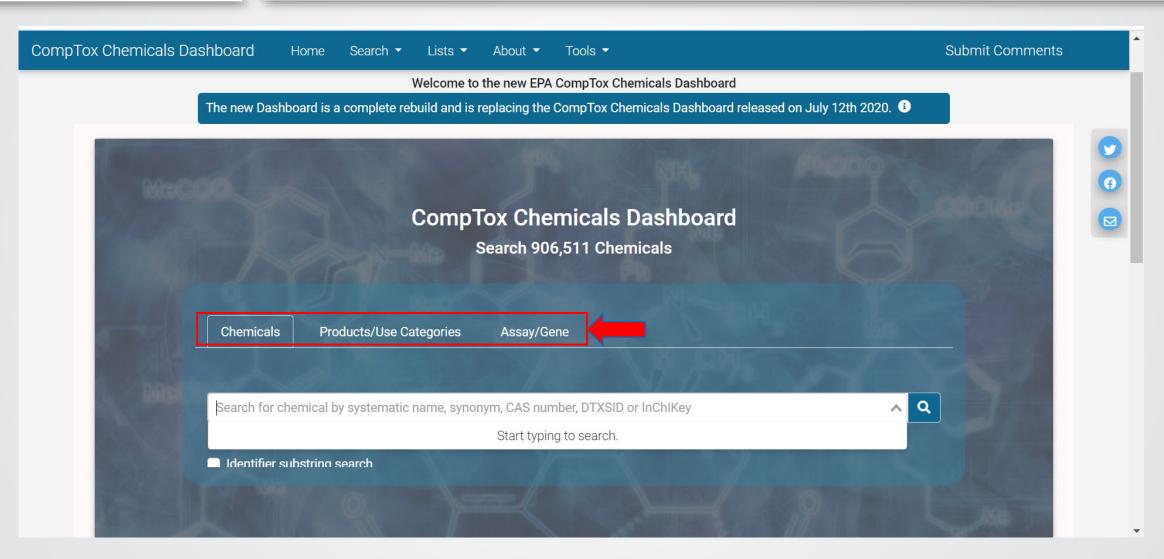
Known Issues

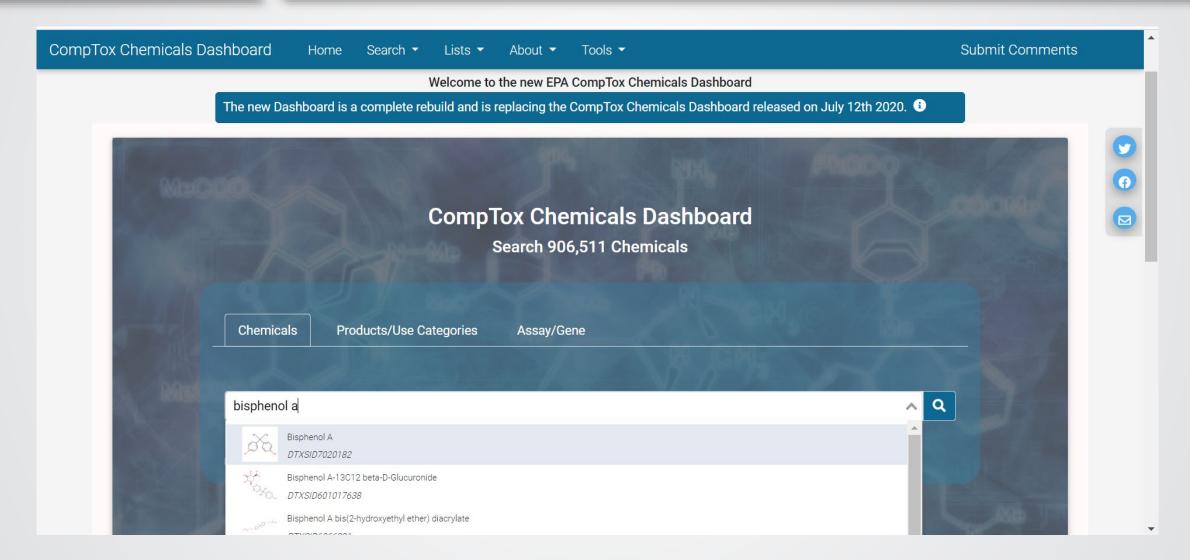
- Browser Cache: In order to properly load the new Comptox Chemical Dashboard and data, please clear the browser cache. We are observing issues caused by browser cache. Refer to the specific instructions on how to clear the cache for the various browsers.
- 2. Chemical Lists:
 - Issue: Some hyperlinks for the list acronyms (e.g. toxcast_phasel, etc.) in the chemical list description are not functional i.e. all chemicals in the list are not displayed.
 - 2. Workaround: To select a particular list in the chemical list, perform the following steps:
 - Select Chemical Lists from the Comptox Dashboard home page
 - · Enter the list acronym in the filter box below the "List Acronym" header
 - · Select the list to see all of the chemicals in that list
- 3. Chemical Result Sets:
 - Issue: Anywhere within the Comptox Chemicals Dashboard that displays a list of chemicals, either
 from a user entered search or preconfigured lists linked from a searched chemical details. The sort
 function on the upper toolbar does not always work.
 - Workaround: The initial view of all these result sets is the Ag-grid view. Use the column header sort function to get your desired sort:
 - · Click on the header of the column you desire to sort on.
 - Once you click on the header it will show an arrow icon pointing up for an ascending order sort or down for descending order sort.
 - Clicking on the column header multiple times will cycle though ascending, descending, and then removing the sort order.

Latest News

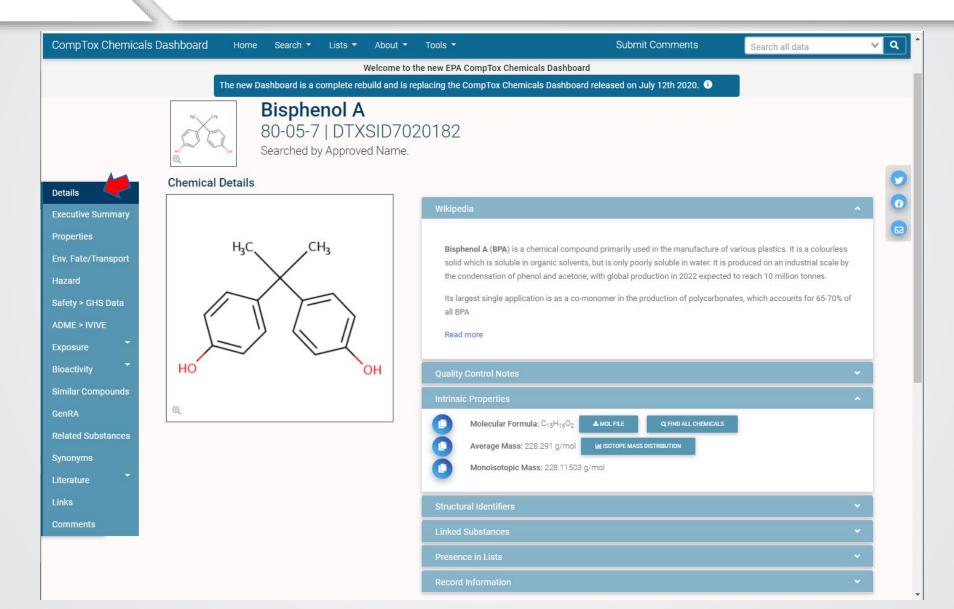

Read More News

_Jpdated architecture, making future development easier (Fall 2021)

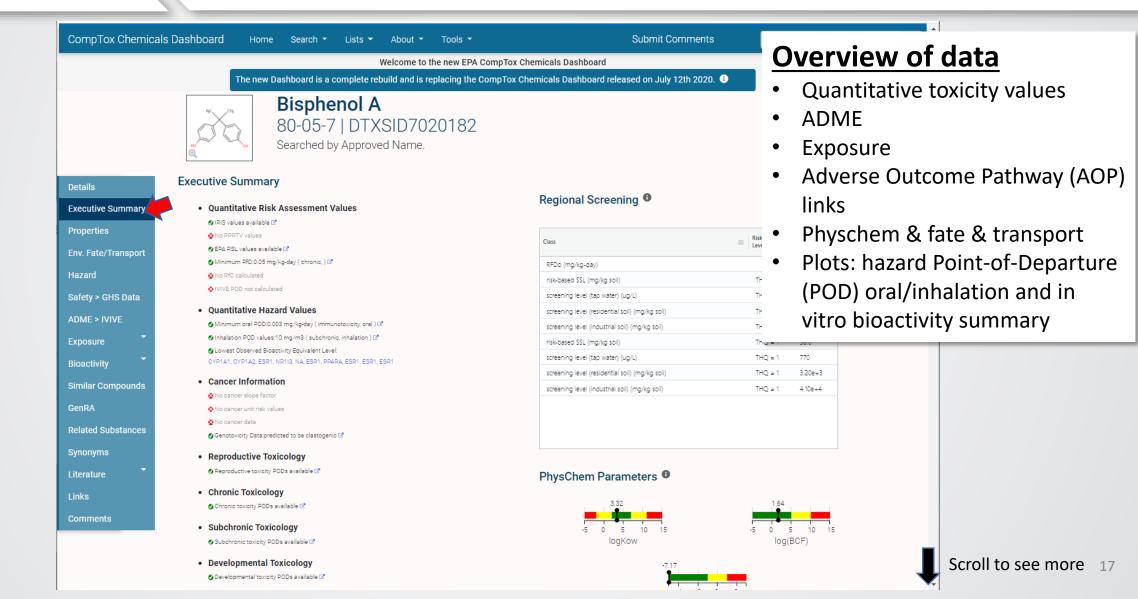

Basic Search


Basic Search – 3 ways

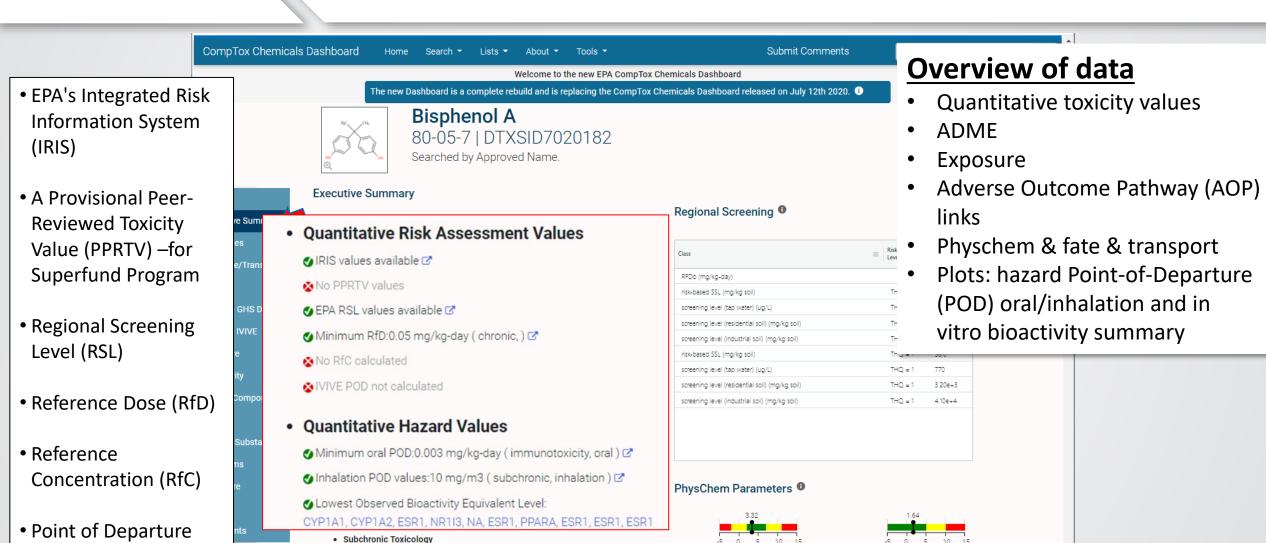
- chemical
- product/use category
- assay/gene



Basic Search – by chemical: "bisphenol a"

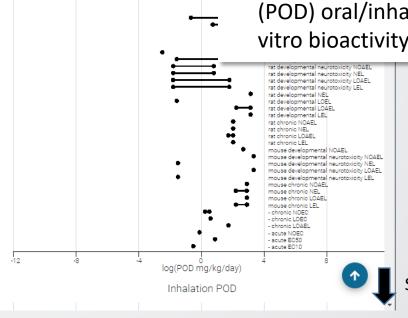


Details tab - Chemical Landing Page


Executive Summary tab

Value (POD)

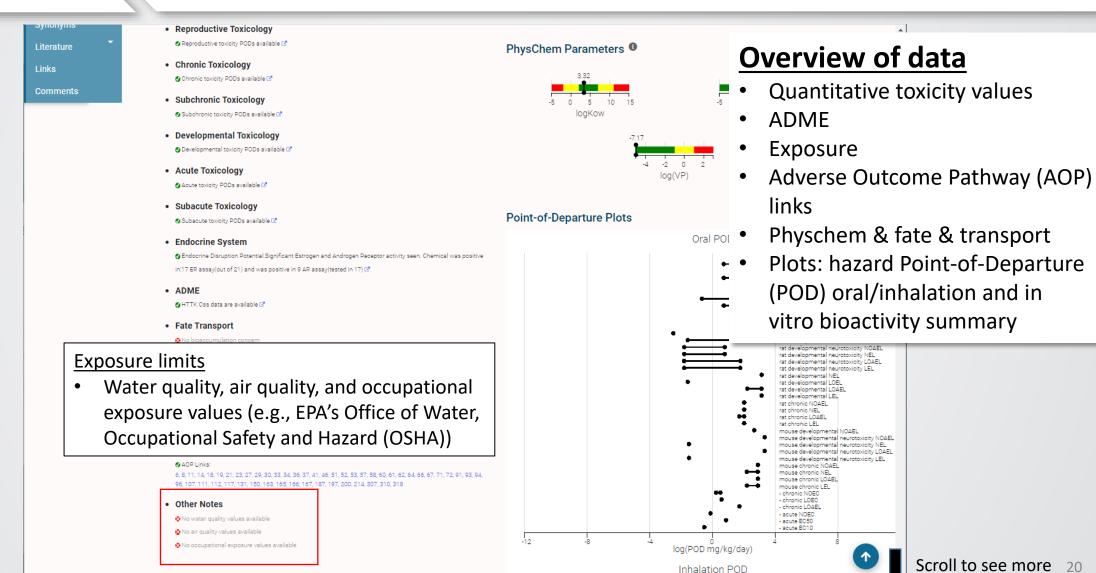
Executive Summary tab



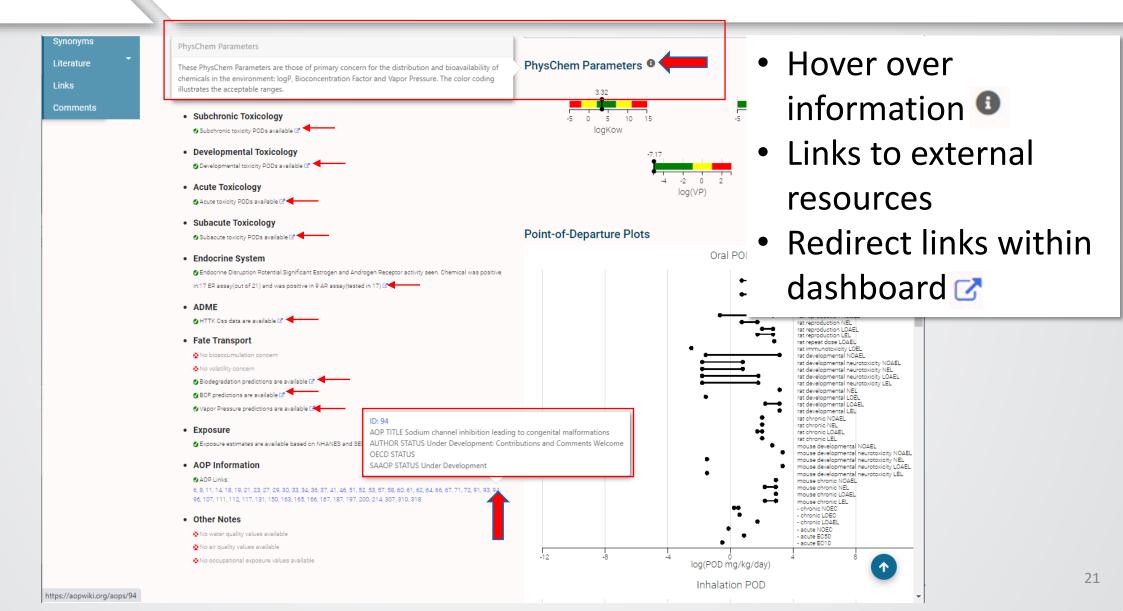
Executive Summary tab

 Reproductive Toxicology Literature Chronic Toxicology Links Comments Subchronic Toxicology Developmental Toxicology 💋 Developmental toxicity PODs available 🗷 Acute Toxicology Subacute Toxicology Point-of-Departure Plots Subacute toxicity PODs available ☑ Endocrine System ## Endocrine Disruption Potential.Significant Estrogen and Androgen Receptor activity seen. Chemical was positive in:17 ER assay(out of 21) and was positive in 9 AR assay(tested in 17) 2 ADME MTTK Oss data are available 🗹 Fate Transport No bioaccumulation concern No volatility concern 🔮 Vapor Pressure predictions are available 🗹 AOP Information AOP Links: 6, 8, 11, 14, 18, 19, 21, 23, 27, 29, 30, 33, 34, 36, 37, 41, 46, 51, 52, 53, 57, 58, 60, 61, 62, 64, 66, 67, 71, 72, 91, 93, 94, 96, 107, 111, 112, 117, 131, 150, 163, 165, 166, 167, 187, 197, 200, 214, 307, 310, 318 Other Notes No water quality values available No air quality values available No occupational exposure values available

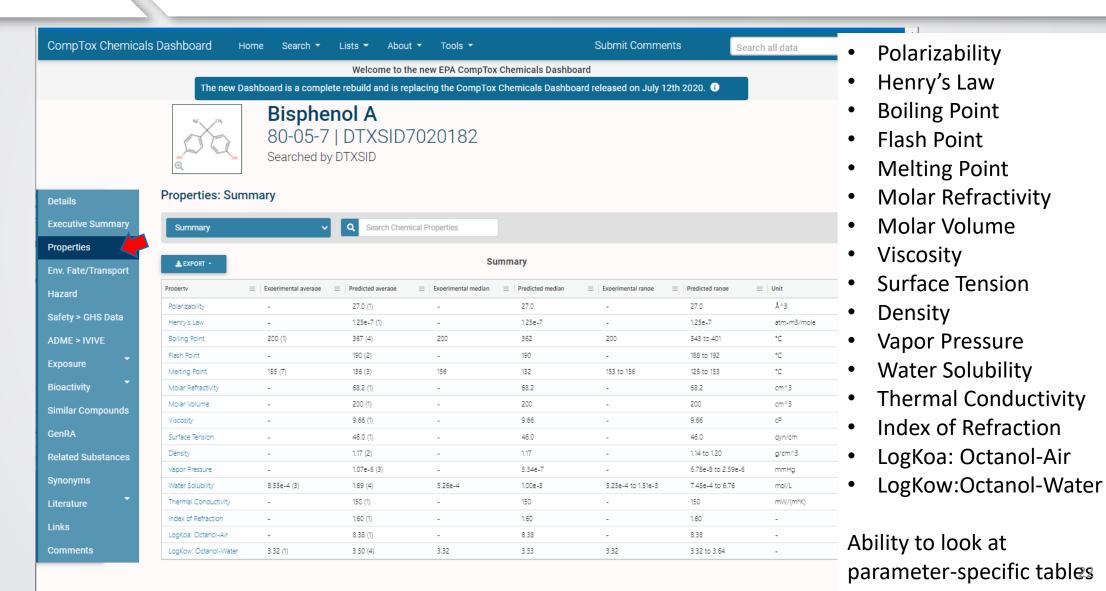
PhysChem Parameters Overview of data Quantitative toxicity values


- ADME
- Exposure
- Adverse Outcome Pathway (AOP) links
- Physchem & fate & transport
- Plots: hazard Point-of-Departure (POD) oral/inhalation and in vitro bioactivity summary

Scroll to see more



Executive Summary tab



Functional Informational Features

Properties tab: Experimental and Predicted Values

Details

New Data Table Functional Features

Properties: Summary

Summary

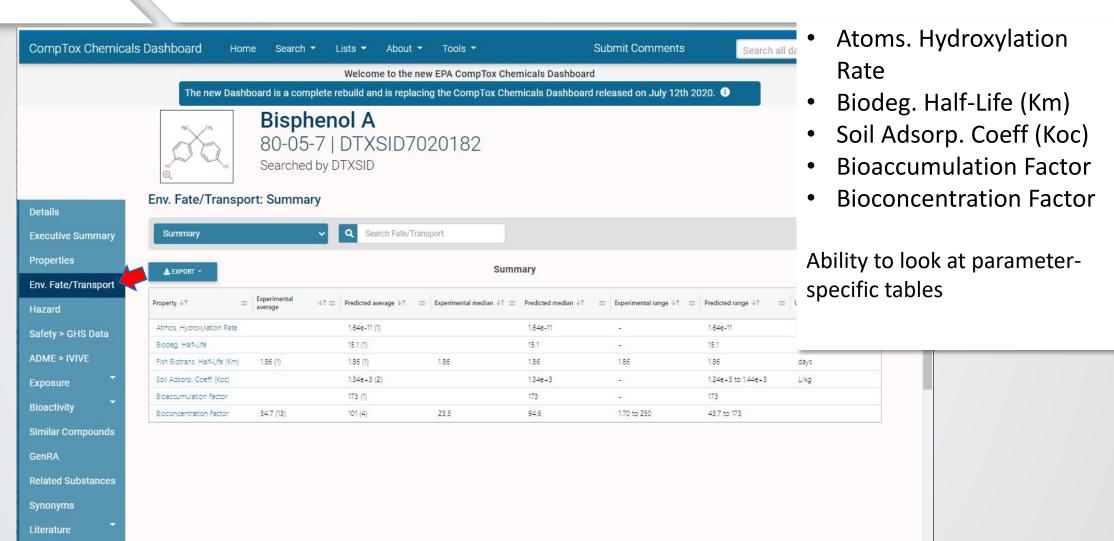
1. Export data

2. Click on column name to sort

3. Filter data

4. Hide/Show columns

Executive Summary Properties Env. Fate/Transport Hazard Safety > GHS Data ADME > IVIVE Exposure Bioactivity Similar Compounds GenRA **Related Substances** Synonyms


≛export + 1	2	1 3 4		Summary				
CSV (.csv)	Experimental average		:	al median 😑 Predicted median	Experimental range	■ Predicted range	≡ Unit	=
Excel (.xlsx)	-	Search		27.0	-	27.0	Å^3	
	-	✓ Property		1.25e-7	-	1.25e-7	atm-m3/mole	
Boiling Point	2(00 (1)	Experimental average		362	200	343 to 401	°C	
Flash Point	-	Predicted average		190	-	188 to 192	°C	
Melting Point	155 (7)	Experimental median Predicted median		132	153 to 156	125 to 153	°C	
Molar Refractivity	-	Experimental range		68.2	-	68.2	cm^3	
Molar Volume	8	✓ Predicted range		200	-	200	cm^3	
Viscosity	ě.	☑ Unit		9.66	-	9.66	сР	
Surface Tension	-			46.0	-	46.0	dyn/cm	
Density	-	1.17 (∠)	-	1.17	-	1.14 to 1.20	g/cm^3	
Vapor Pressure	-	1.07e-6 (3)	-	5.34e-7	-	6.78e-8 to 2.59e-6	mmHg	
Water Solubility	855e-4 (3)	1.69 (4)	5.26e-4	1.00e-3	5.25e-4 to 1.51e-3	7.45e-4 to 6.76	mol/L	

Links

Comments

Env.Fate/Transport tab

What can these properties be used for?

Physical-Chemical & Environmental Fate/Transport Properties

- Input into broader models e.g., hazard, toxicokinetics, exposures
- Use as flags related to persistence and bioaccumulation
- Experimental design e.g., knowing what chemicals are too volatile when designing bioactivity screens

Other Chemistry-Related Data

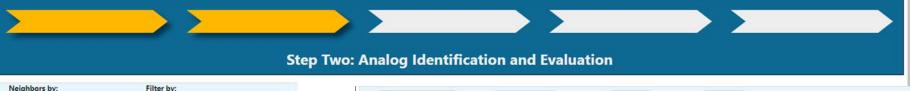
Similar Compounds

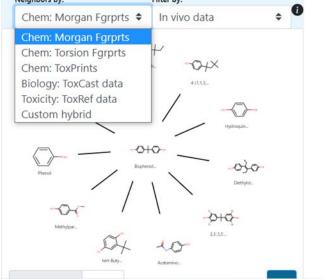
GenRA

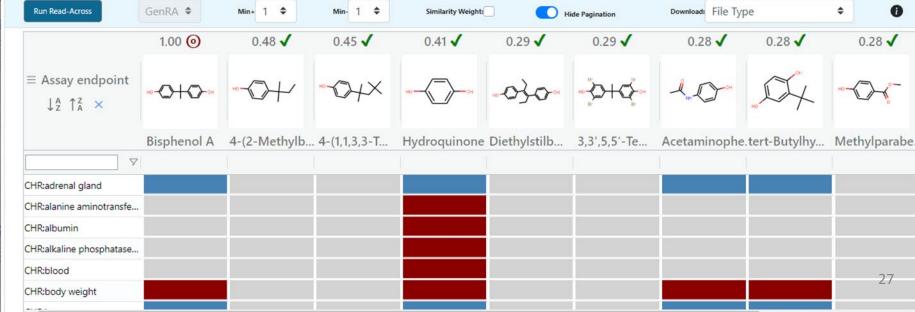
Related Substances

- Similar Compounds, based on similarity of molecular fingerprints
- Related Substances, based on
 - Salt Form
 - Monomer
 - Polymer
 - Predecessor: Component
 - Component
 - Markush Parent
 - Markush Child
 - Transformation Parent
 - Transformation Product

Generalized Read-Across (GenRA)


Similar Compounds


GenRA


Related Substances

Interactive workflow to:

- search for target or draw it;
- define fingerprints for similarity and number of analogs;
- Examine what data exist for source analogs;
- Inspect the consistency, concordance, and range of effects for analogs
- Understand confidence in the prediction(s)

Hazard tab

ECHA POC

ECHA POC

ECHA POC

ECHA POC

Rows: 223

LOAEL

NOAEL

NOAEL

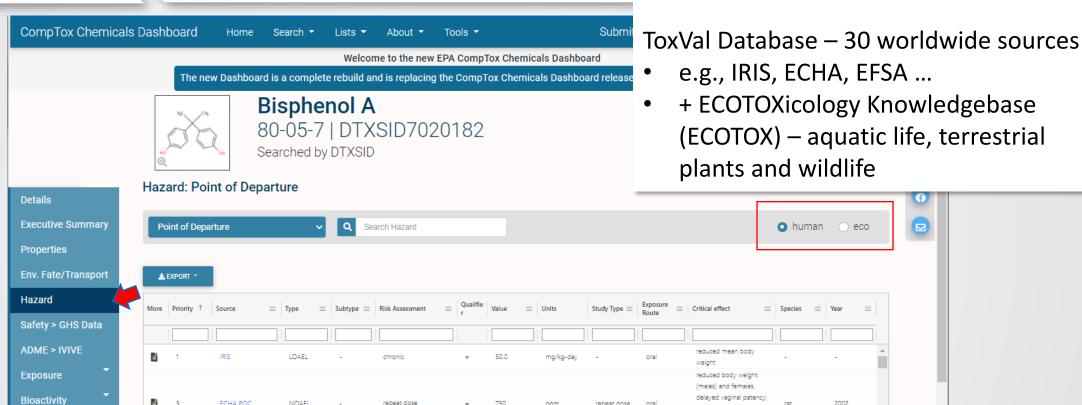
reproduction

Similar Compounds

Related Substances

GenRA

Synonyms Literature


Comments

Links

Traditional animal studies toward human toxicity & ecotoxicology

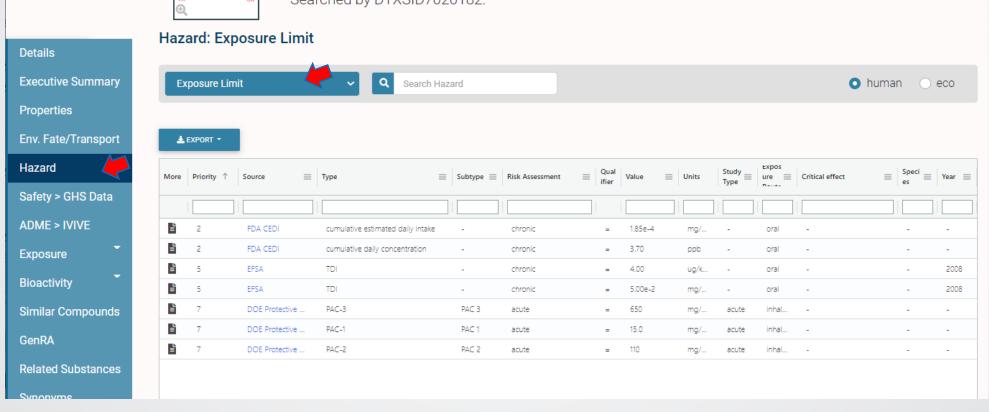
body weight and weigh

2002

750

ma/m3

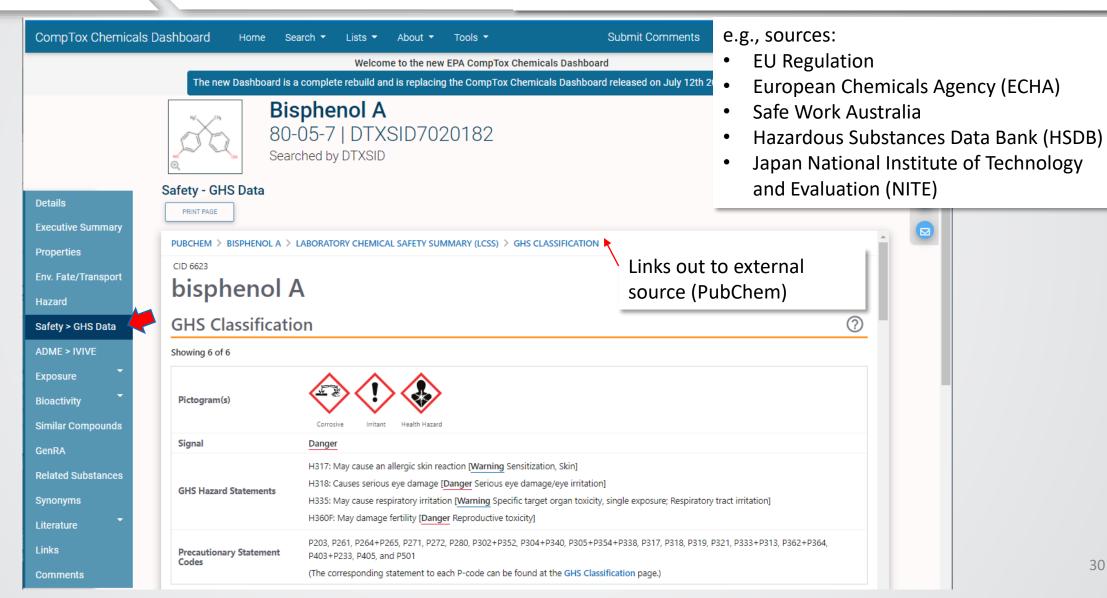
Total Rows: 223


Hazard tab

CompTox Chemicals Dashboard Home Search Lists About Tools Welcome to the new EPA CompTox Chemicals Dashboard is a complete rebuild and is replacing the CompTox Chemicals Dashboard Bisphenol A 80-05-7 | DTXSID7020182 Searched by DTXSID7020182.

Exposure limits

Water quality, air quality, and occupational exposure values


e.g.,EPA's Office of Water, Occupational Safety and Hazard (OSHA), Food and Drug Administration, State-specific values

Safety > GHS Data

GHS (Globally Harmonized System of Classification and Labelling of Chemicals) is a United Nations system to identify hazardous chemicals and to inform users about these hazards.

Bioactivity tabs (in vitro)

US EPA's Toxicity Forecasting (ToxCast) Program

https://www.epa.gov/chemical-research/toxicity-forecasting

- High throughput chemical screens to generate biological data on hundreds to thousands of chemicals
 - E.g., chemical-biological receptor interaction, metabolomics changes, functional cellular changes (neural network function), zebrafish development
 - Tox21 intergovernmental US collaboration
- Development of predictive models utilizing individual assay data (e.g., estrogen receptor (ER) model)

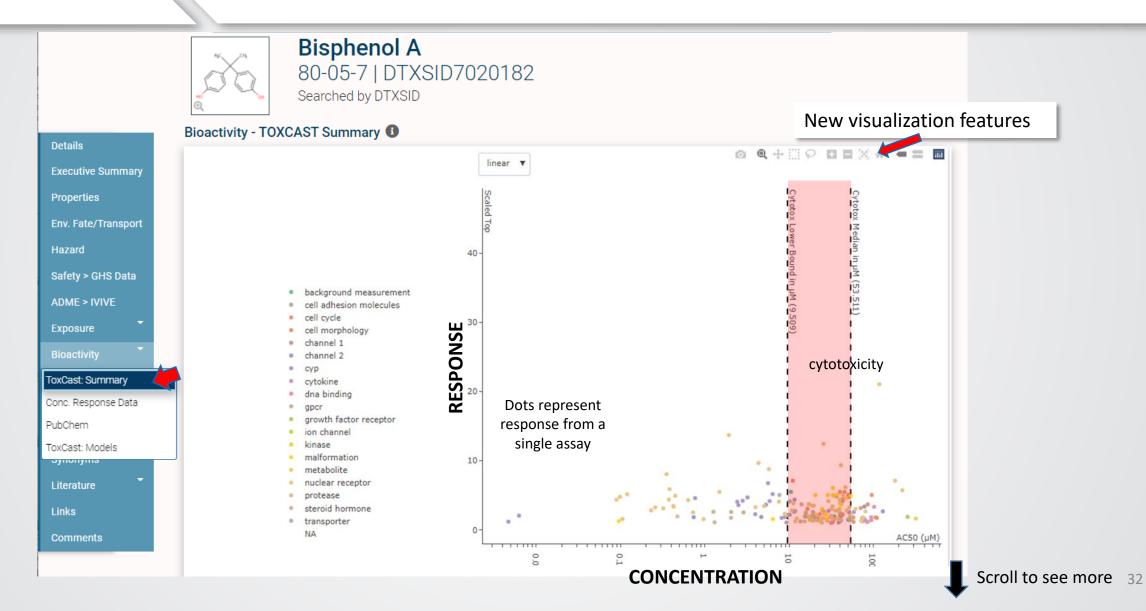
Bioactivity

ToxCast: Summary

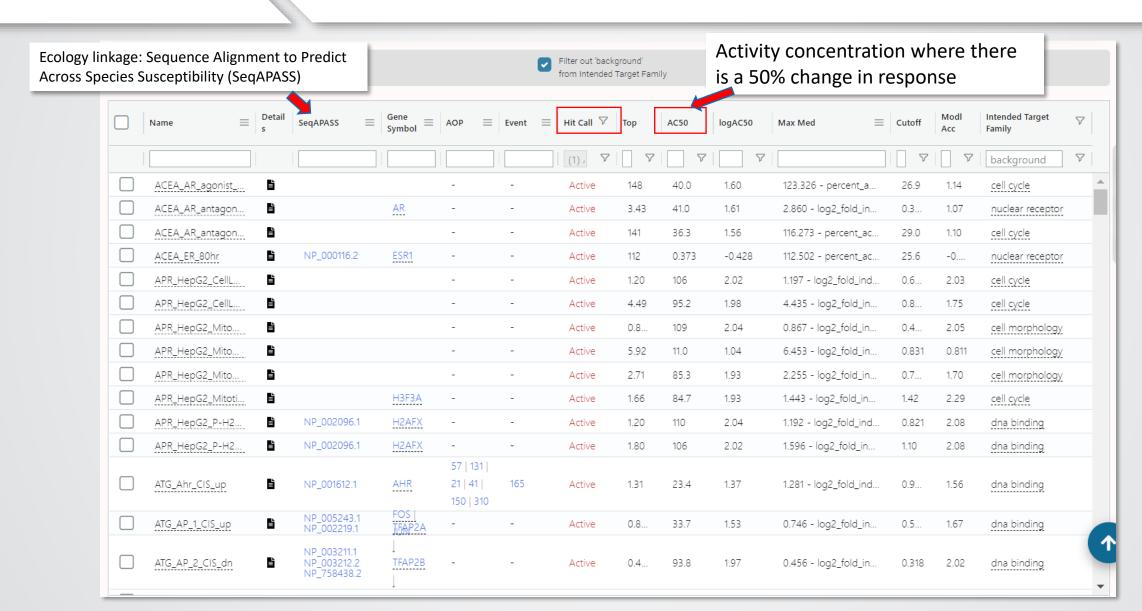
Conc. Response Data

PubChem

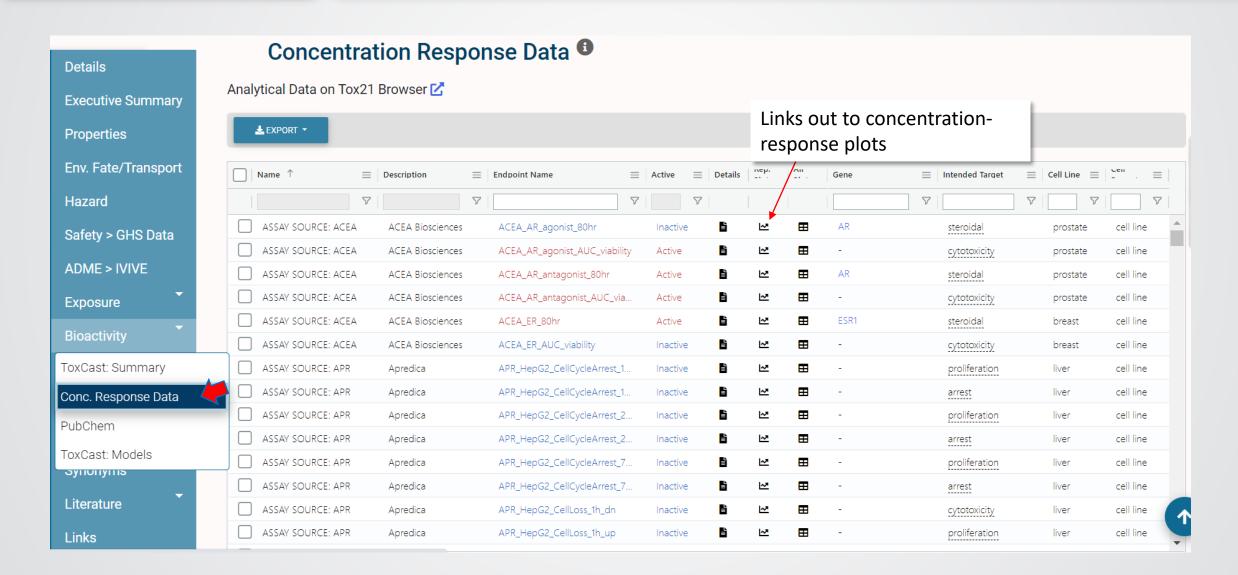
ToxCast: Models



Model



Bioactivity tab: ToxCast Summary



Bioactivity tab: ToxCast Summary

Bioactivity tab: Conc. Response Data

Bioactivity tab: Conc. Response Data

Bioactivity tab: PubChem

Bioactivity tab: ToxCast: Models

Details

Executive Summary

Properties

Env. Fate/Transport

Hazard

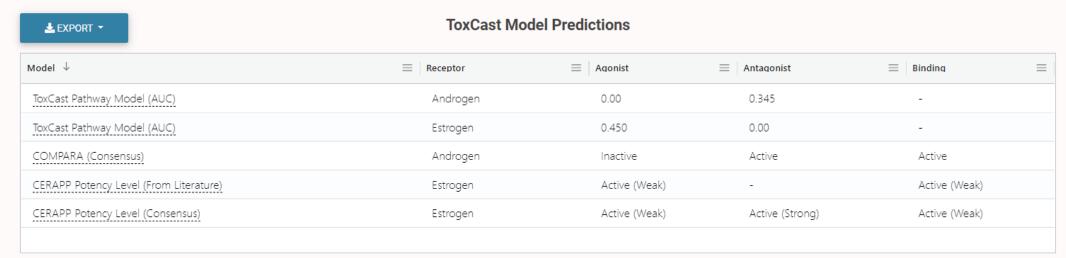
Safety > GHS Data

ADME > IVIVE

Exposure

Bioactivity

ToxCast: Summary

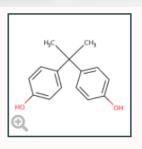

Conc. Response Data

PubChem

ToxCast: Models

SIIIVIIIVIIIS

Bioactivity - ToxCast: Models


What can be done with the bioactivity data?

- Valuable for chemical safety and risk assessment
 - Routinely used by industries and regulatory authorities (e.g., genotoxicity)
- Informing Adverse Outcome Pathways
- Estrogen Pathway model is an alternate Tier 1 screen for the US EPA's Endocrine Disruptor Screening Program (EDSP)
- Toward prioritization: In vitro to in vivo extrapolation (IVIVE)
 - Calculate an external exposure dose based on the in vitro bioactivity data and compare with predicted exposures

ADME > IVIVE tab

ADME – Absorption, Distribution, Metabolism, Excretion IVIVE – in vitro to in vivo extrapolation

Bisphenol A

80-05-7 | DTXSID7020182

Searched by Approved Name.

Executive Summary

Properties

Env. Fate/Transport

Hazard

Safety > GHS Data


ADME > IVIVE

Exposure

Bioactivity

Similar Compounds

≛ EXPORT ▼

IVIVE

Label	■ Measured	□ Predicted	□ Computed	≡ Unit	=
In Vitro Intrinsic Hepatic Clearance	19.90	-	-	uL/min/million hepatocytes	
Fraction Unbound in Human Plasma	0.04	-	-		
Volume of Distribution	-	-	5.01	L/kg	
Days to Steady State	-	-	1.00	Days	
PK Half Life	-	-	31.70	hours	
Human Steady-State Plasma Concentration	-	-	3.30	mg/L	

Exposure tabs

Reported and measured data - come from public sources (e.g., MSDS sheets, EPA's Toxics Release Inventory, National Health and Nutrition Examination Survey (NHANES) biomonitoring data)

<u>Predicted data</u> - use various inputs, including physchem and env./fate transport data

Databases are developed for public consumption. E.g.,

- EPA's Chemical and Products Database (CPDat)
- EPA's Chemical/Product Categories Database (CPCat)

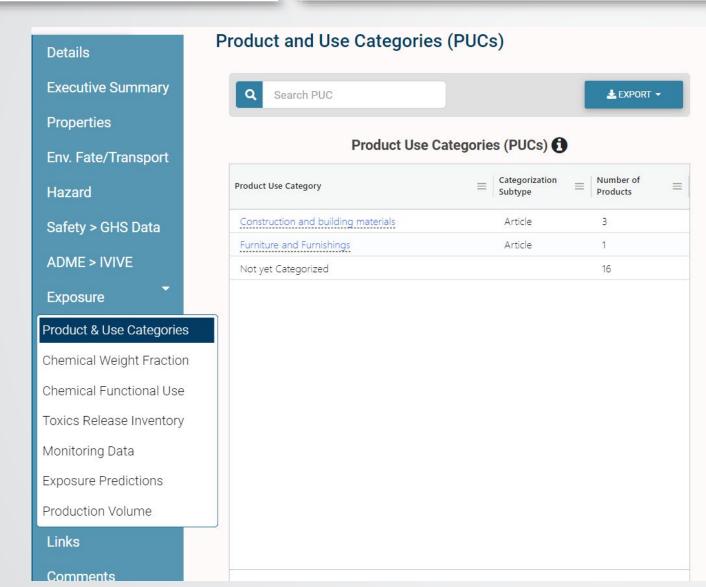
Exposure

Product & Use Categories

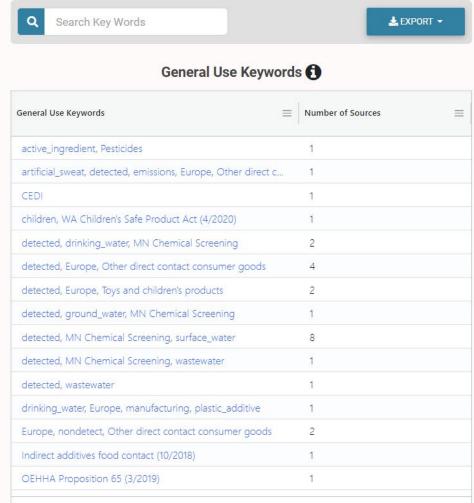
Chemical Weight Fraction

Chemical Functional Use

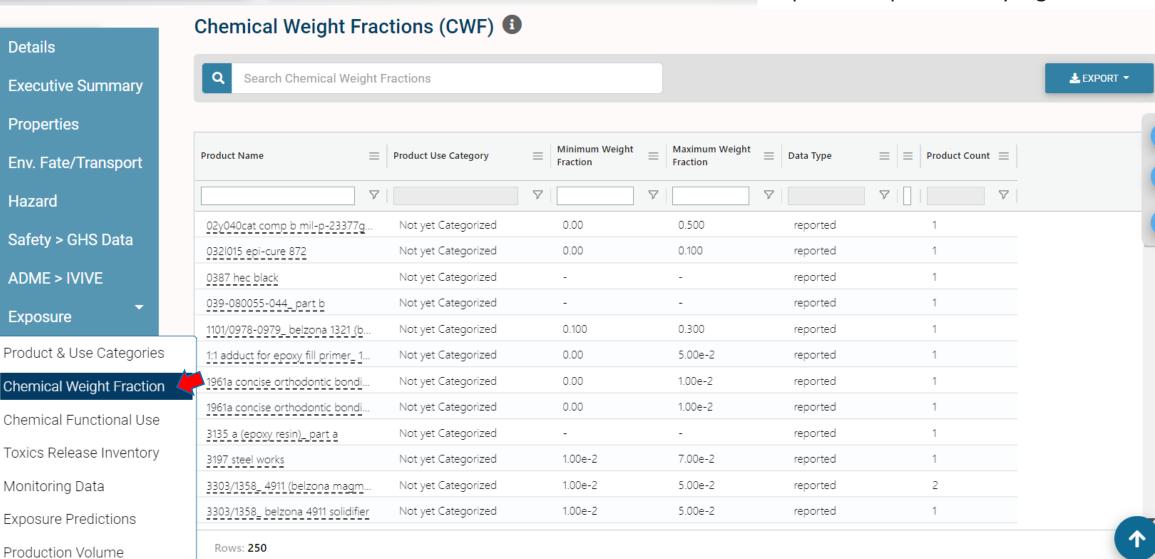
Toxics Release Inventory


Monitoring Data

Exposure Predictions


Production Volume

Exposure tab: Product & Use Categories


EPA's Chemical and Products Database (CPDat)
EPA's Chemical/Product Categories Database (CPCat)

Exposure tab: Chemical Weight Fraction

Reported or predicted by ingredient list

Exposure tab: Functional Use

Reported and predicted values

Details

Executive Summary

Properties

Env. Fate/Transport

Hazard

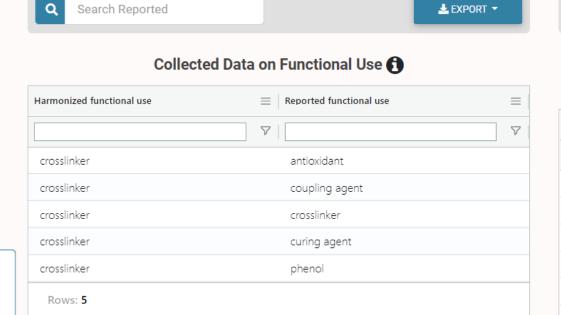
Safety > GHS Data

ADME > IVIVE

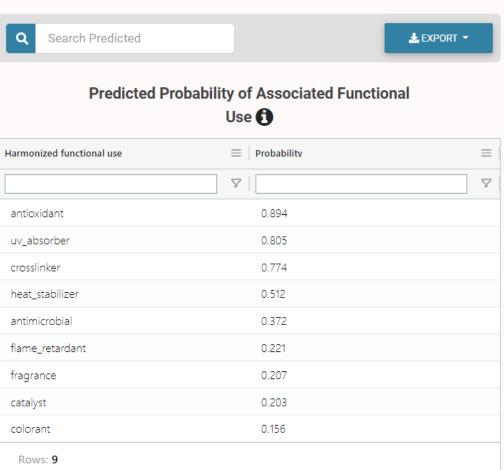
Exposure

Product & Use Categories

Chemical Weight Fraction


Chemical Functional Use

Toxics Release Inventory


Monitoring Data

Exposure Predictions

Production Volume

Exposure - Collected Data on Functional Use

Exposure tab: Toxics Release Inventory

Reported values

Exposure

Product & Use Categories

Chemical Weight Fraction

Chemical Functional Use

Toxics Release Inventory

Monitoring Data

Exposure Predictions

Production Volume

https://www.epa.gov/trinationalanalysis

https://awsedap.epa.gov/public/extensions/TRINA dashboard 2020/TRINA dashboard 2020.html

Not currently working, but should look like this:

2019 TRI Factsheet: Chemical - 4,4'-Isopropylidenediphenol, 0000080057

Data Source: 2020 National Analysis Dataset (October 2021, released October 2021)

The Toxics Release Inventory (TRI) tracks the management of certain toxic chemicals that may pose a threat to human health and the environment. Certain industrial facilities in the U.S. must report annually how much of each chemical is recycled, combusted for energy recovery, treated for destruction, and disposed of or otherwise released on- and off-site. This information is collectively referred to as production-related waste managed.

Map of TRI Facilities Reporting 4,4'-Isopropylidenediphenol

CANADA H NÉXICO Esri, HERE, Garmin, FAO, NOAA, EPA SI

Quick Facts for 2019

	Chemical	United States
Number of TRI Facilities:	125	21,705
Total Production- Related Waste Managed:	11.6 million lbs	30.6 billion lbs
Total On-site and Off-site Disposal or Other Releases:	2.8 million lbs	3.4 billion lbs
Total On-site:	832.8 thousand lbs	2.9 billion lbs
• <u>Air</u> :	32.1 thousand lbs	602.1 million lbs
• Water:	1.3 thousand lbs	200.7 million lbs
• <u>Land</u> :	799.4 thousand lbs	2.1 billion lbs
Total Off-site:	2.0 million lbs	459.4 million lbs

Exposure tab: Monitoring data

Measured values

≛ EXPORT ▼

Executive Summary

Properties

Env. Fate/Transport

Hazard

Safety > GHS Data

ADME > IVIVE

Exposure

Product & Use Categories

Chemical Weight Fraction

Chemical Functional Use

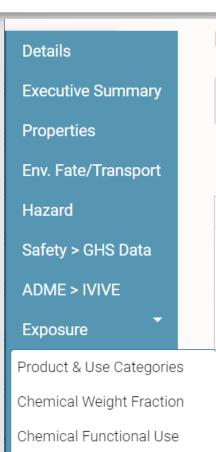
Toxics Release Inventory

Monitoring Data

Exposure Predictions

Production Volume

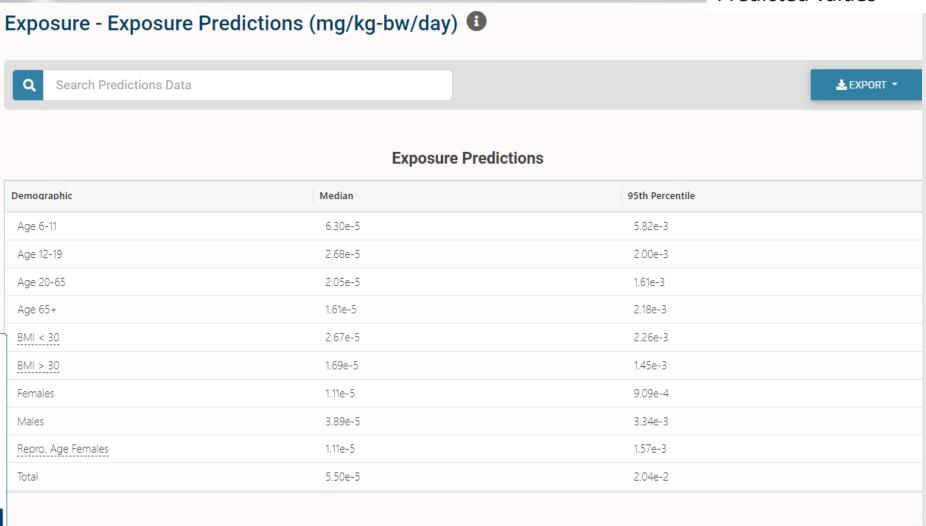
Q Search Monitoring Data


Monitoring Data

Demographic	Lower Bound (Median)	Upper Bound (Median)	Median	
Age 6-11	3.80e-5	4.92e-5	4.33e-5	
Age 12-19	2.55e-5	3.38e-5	2.93e-5	
Age 20-65	2.79e-5	3.27e-5	3.02e-5	
Age 65+	1.91e-5	2.31e-5	2.10e-5	
BMI < 30	3.02e-5	3.30e-5	3.16e-5	
BMI > 30	2.38e-5	2.74e-5	2.55e-5	
Females	2.58e-5	3.03e-5	2.80e-5	
Males	2.94e-5	3.37e-5	3.15e-5	
Repro. Age Females	2.83e-5	3.31e-5	3.06e-5	
Total	2.86e-5	3.08e-5	2.97e-5	

Exposure tab: Exposure Predictions

Predicted values



Toxics Release Inventory

Monitoring Data

Exposure Predictions

Production Volume

Exposure tab: Production Volume

Reported values

Details

Executive Summary

Properties

Env. Fate/Transport

Hazard

Safety > GHS Data

ADME > IVIVE

Exposure

Product & Use Categories

Chemical Weight Fraction

Chemical Functional Use

Toxics Release Inventory

Monitoring Data

Exposure Predictions

Production Volume

EPA's Chemical Data Reporting (CDR) Rule, issued under the Toxic Substances Control Act (TSCA)

Name \equiv	Amount (lb)
Domestic Manufacturing Production	187836000*
Imported Volume	16973090*
Volume Used	0*
Volume Exported	43815500*

Literature tabs

- Google Scholar
 PubMed Abstract Sifter
 PubChem Articles
 PubChem Patents
 PPRTV
 IRIS
- Perform searches of publications containing the chemical, as well as user-defined terms
 - Google Scholar
 - PubMed Abstract Sifter
- Direct visualization of curated chemical database information
 - PubChem Articles
 - PubChem Patents
 - PPRTV (EPA's Provisional Peer-Reviewed Toxicity Value)
 - IRIS (EPA's Integrated Risk Information System)

Literature tab: Google Scholar

✓ include citations

Create alert

RA Keri, SM Ho, PA Hunt, KE Knudsen, AM Soto... - Reproductive ..., 2007 - Elsevier

☆ Save 切 Cite Cited by 332 Related articles All 15 versions

..., particularly with knowledge and research on bisphenol A (BPA). Five subpanels were charged

... These were presented and discussed at an open forum entitled "Bisphenol A: An Expert ...

49

My profile

[HTML] nih.gov

[PDF] tulane.edu

[HTML] nih.gov

Literature tab: PubMed Abstract Sifter

3 Click Retrieve Articles to begin

RETRIEVE ARTICLES

0 of 16058 articles loaded

May choose terms from dropdown menu or type your own

download.

2 Optionally, enter any PubMed query or edit the

query from step 1

"80-05-7" OR "Bisphenol A"

IRIS

Literature - PubMed Abstract Sifter

Select PubMed starting point

Abstract Sifter Instructions

Choose Query Term

Choose Query Term

Hazard

Fate and Transport

Metabolism/PK/PD

Chemical Properties

Exposure

Mixtures

Male Reproduction

Androgen Disruption

Female Reproduction

GeneTox

Cancer

Clinical Trials

Embryo and embryonic development

Child (infant through adolescent)

Dust and Exposure

Food and Exposure

Water and Exposure

Algae

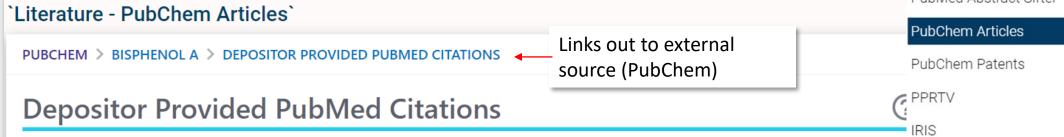
Disaster / Emergency

PubMed ID	Year ↓↑	Title ↓↑	■ Authors ↓↑	=	Journal ↓↑	=	Rev ↓↑	DOI ↓↑	Vol ↓↑	Issue ↓↑	↑↑
	1	1	7	7		∇					
35376969	2022	Pharmacokinetics and toxicit	Lee; An; Kim; Noh; Lee; Le	e;	Archives of toxicology			10.1007	-	-	
35278557	2022	Bisphenol chemicals disturb i	. Zhu; Wei; Li; Li; Dong; Che	n;	The Science of the total env	ir		10.1016	828		154
35168014	2022	Bisphenol A and declining se	. Kortenkamp; Martin; Ermle	er;	International journal of hygi	e		10.1016	241	-	113.
34884472	2021	Alteration of Extracellular Ma	. Sanannam; Looprasertkul;	Ka	International journal of mole	ec		10.3390	22	23	,#.C
34773844	2021	Acute and subacute repeate	Kim; Maruthupandy; An; L	ee;	Ecotoxicology and environn	n		10.1016	228	(*)	112.
34712366	2021	Opinion on the impact of no	More; Benford; Hougaard	Ве	EFSA journal. European Foo	d		10.2903	19	10	e06
34408969	2021	A critical assessment of the e	. Natsch; Hostettler; Haupt;	La	Toxicology reports			10.1016	8		100
34383603	2021	Multi- and Transgenerational	. López-Rodríguez; Aylwin;	De	Environmental health persp	e		10.1289	129	8	87C
34363818	2021	Bisphenol A and genistein ha.	Gao; Gao; Fan; Liu; Li; Mia	o;	Chemico-biological interact	io		10.1016	347	-	109
34345859	2021	Endocrine disrupting chemic	Mattiske; Pask		Current research in toxicolo	gy	√	10.1016	2	9	179
34302887	2021	Proteomic profile of the effec	Molina; Abril; Lora; Huerta	S	Food and chemical toxicolo	g		10.1016	156	-	112.

Optionally, export

♣ SEND TO ▼

articles



4,582 items View More Rows & Details

Literature tab: PubChem Articles

Download

SORT BY | Publication Date **PMID Publication Date** Title Journal Bisphenol A drives di(2-ethylhexyl) phthalate promoting thyroid tumorigenesis Journal of hazardous 34910997 2022-03-05 via regulating HDAC6/PTEN and c-MYC signaling materials The Science of the total BDNF as a potential mediator between childhood BPA exposure and 2022-01-10 34788942 behavioral function in adolescent boys from the INMA-Granada cohort environment Maternal exposure to bisphenol A induces fetal growth restriction via Chemosphere 34537452 2022-01-01 upregulating the expression of estrogen receptors Binding and activity of bisphenol analogues to human peroxisome Ecotoxicology and 34627044 2021-12-15 proliferator-activated receptor β/δ environmental safety Autism-Related Transcription Factors Underlying the Sex-Specific Effects of International journal of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the 34947998 2021-12-08 molecular sciences Offspring Prefrontal Cortex 2 3 ... 917 Next >

Literature tab: PubChem Patents

Literature

Google Scholar

PubMed Abstract Sifter

PubChem Articles

PubChem Patents

PPRTV

IRIS

Depositor-Supplied Patent Identifiers

PUBCHEM > BISPHENOL A > DEPOSITOR-SUPPLIED PATENT IDENTIFIERS

`Literature - PubChem Patents`

179,052 items View More Rows & Details 🔼 Download

SORT BY Priority Date

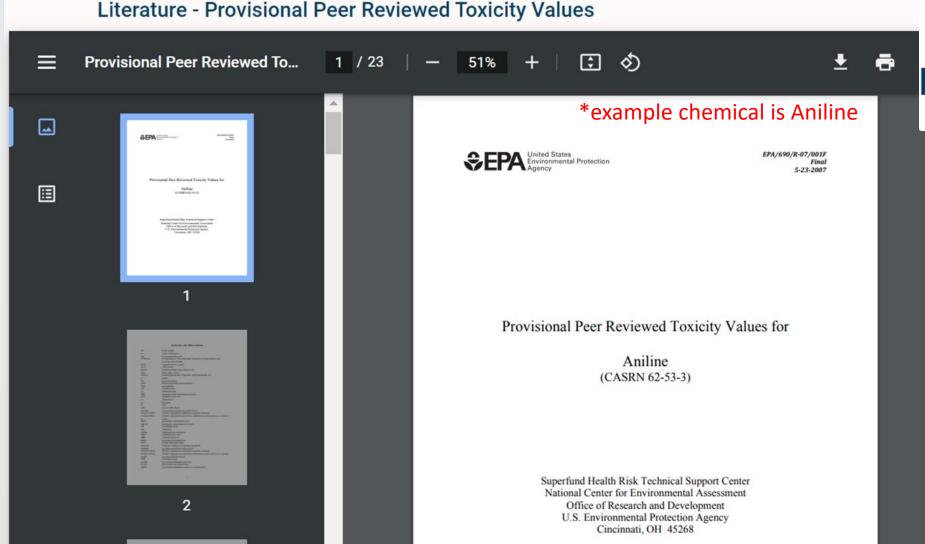
	SORI BI	- Priority Date	
Publication Number ?	Title	Priority Date ②	Grant Date
EP-3757145-A2	Microcellular polyurethane elastomers	2020-10-27	
US-10894625-B1	Lightweight polymer bottle for wine and spirits	2020-07-29	2021-01-19
US-10906238-B1	Shape memory polymer inks and methods of printing the same	2020-06-26	2021-02-02
US-2020268558-A1	Chromism For Hemorrhage Control	2020-05-09	
US-2020268559-A1	Method For Dressing Wounds With Chromic Materials	2020-05-09	

▶ PubChem

Literature tab: PPRTV

Literature

Google Scholar


PubMed Abstract Sifter

PubChem Articles

PubChem Patents

PPRTV

IRIS

Literature tab: IRIS

Literature

Google Scholar

PubMed Abstract Sifter

PubChem Articles

PubChem Patents

PPRTV

IRIS

Literature - IRIS

EPA's Integrated Risk Information System

IRIS Home

About IRIS

IRIS Recent Additions

IRIS Calendar

IRIS Assessments

Advanced Search

IRIS Program Materials

Contact Us

Bisphenol A

CASRN 80-05-7 | DTXSID7020182

• IRIS Summary (PDF) (8 pp, 93 K)

Key IRIS Values

Other EPA Information

Noncancer Assessment

Reference Dose for Oral Exposure (RfD) (PDF) (8 pp, 93 K)

Last Updated: 09/26/1988

System	RfD (mg/kg- day)	Basis	PoD	Composite UF	
Other	5 x 10 ⁻²	Reduced mean body weight	LOAEL: 5.0 x 10 ¹ mg/kg- day	1000	

Related Links

• EPA Chemicals Dashboard -Bisphenol A

Chemical Structure for Bisphenol A

Bisphenol A

External Links

Literature Links

General

- ACS Reagent Chemicals
- CAMEO Chemicals
- ChEBI
- ChemAgora
- **ChEMBL**
- T Chemspider
- @ Consumer Product Information

Database

- (CPCat
- DrugBank
- **ECHA Brief Profile**
- **ECHA** Infocard
- EPA Substance Registry Service
- Q MSDS Lookup
- MIOSH Chemical Safety Cards
- NIST Chemistry Webbook
- PubChem
- PubChem 3D conformer

download

- PubChem 3D Structure Display
- PubChem: Chemical Vendors
- PubChem Safety Sheet

Toxicology

- (ACTOR
- (ACTOR PDF Report
- ☑ BindingDB
- CalEPA OEHHA
- Chemical Checker
- () ChemView
- C CTD
- он₂ DrugPortal
- @ eChemPortal
- ECOTOX
- National Air Toxics

Assessment

NIOSH IDLH Values

Publications

>> Bielefeld Academic

Search Engine

- BioCaddie DataMed
- CORE Literature Search
- Federal Register
- G Google Books (Structure

Search)

G Google Books (Text

Search)

G Google Patents (Structure

search)

G Google Patents (Text

search)

- **G** Google Scholar (Structure search)
- G Google Scholar (Text

search)

- IRIS Assessments
- NIOSH Pocket Guide
- MIOSH Skin Notation

Profiles

PPRTVWEB

Analytical

IR Spectra on PubChem

MONA: MassBank North

America

- a mzCloud
- 🛦 National Environmental

Methods Index

- NIST NIST Antoine Constants
- NIST IR Spectrum

NIST Kovats Index values

- NIST MS Spectrum
- ☑ Protein DataBank
- RSC Analytical Abstracts

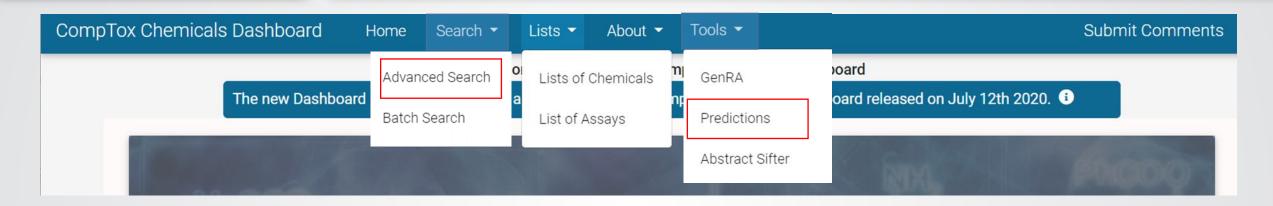
♠ Tox21 Analytical Data

Prediction

2D NMR HSQC/HMBC

Prediction

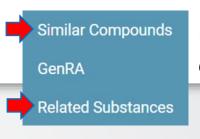
Carbon-13 NMR


Prediction

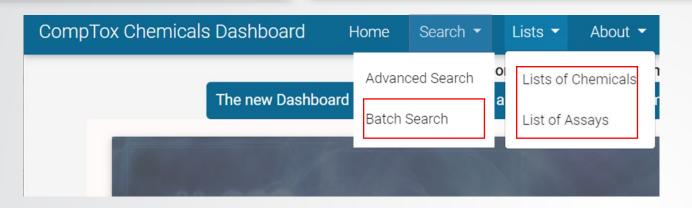
- ChemRTP Predictor
- Proton NMR Prediction

Are there other ways to search?

Advanced Search, by


- Mass
- Empirical formula
- o Both

Predictions

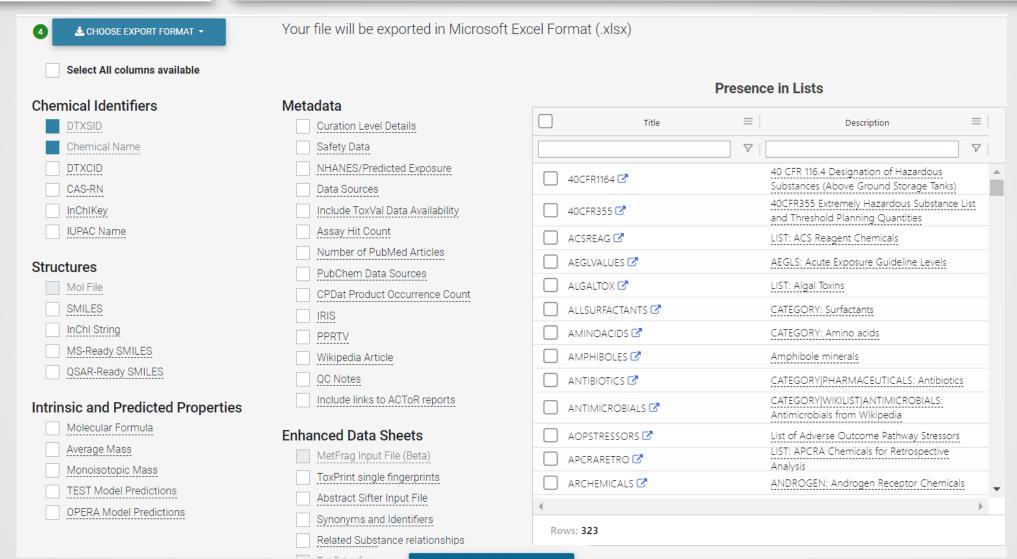

- Search or draw structure
- Predictions are based on QSAR models related to the Toxicity Estimation Software Tool (TEST)
- ✓ Toxicological properties
 ✓ 96 hour fathead minnow LC50
 ✓ 48 hour D. magna LC50
 ✓ 48 hour T. pyriformis IGC50
 ✓ Oral rat LD50
 ✓ Bioconcentration factor
 ✓ Developmental toxicity
 ✓ Ames mutagenicity
 ✓ Estrogen Receptor RBA
 ✓ Estrogen Receptor Binding
- ✓ Physical properties
 ✓ Normal boiling point
 ✓ Melting point
 ✓ Flash point
 ✓ Vapor pressure
 ✓ Density
 ✓ Surface tension
 ✓ Thermal conductivity
 ✓ Viscosity
 ✓ Water solubility

Batch Searches

*within a chemical search

Chemicals Products/Use Categories Assay/Gene

Search for chemicals based on product or use categories


List of Chemicals
Lists of Assays
Products/Use Categories
Similar Compounds
Related Substances

Send the selected chemicals To Batch Search

Batch Search

Batch Search

Case Example

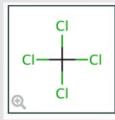
How are data available through the CompTox Chemicals Dashboard used in the Clean Water Act programs?

Clean Water Act Programs

https://www.epa.gov/laws-regulations/summary-clean-water-act

EPA publishes human health criteria recommendations to protect from ingestion of aquatic organisms and for ingestion of water and the organisms.

These recommended criteria are calculated using toxicity factors, bioaccumulation factors, and exposure factors (body weight, water intake, fish consumption rate).

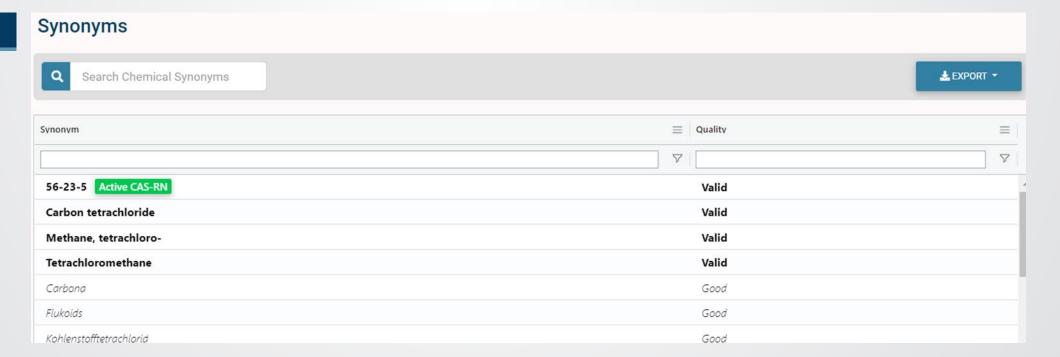

EPA often uses a cancer slope factor (carcinogens) or a reference dose (noncarcinogens) from the agency's Integrated Risk Information System (IRIS) as the toxicity factor.

Finding information on the Dashboard

Single chemical search

https://comptox.epa.gov/dashboard/chemical/details/DTXSID8020250

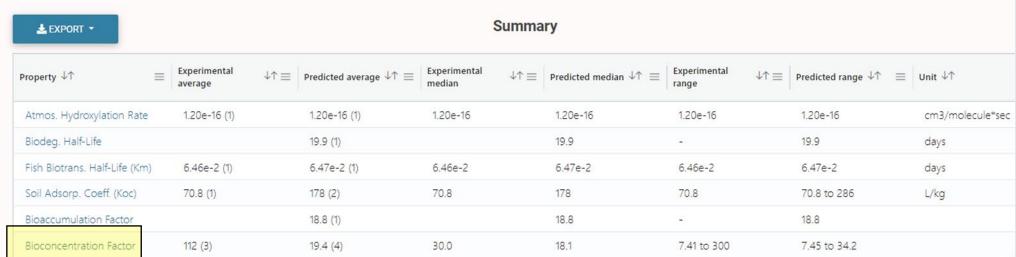



Carbon tetrachloride

56-23-5 | DTXSID8020250

Searched by Approved Name.

A chemical may be identified by more than one name or identifier (e.g., CAS – assigned by the American Chemical Society)



Environmental fate and transport data

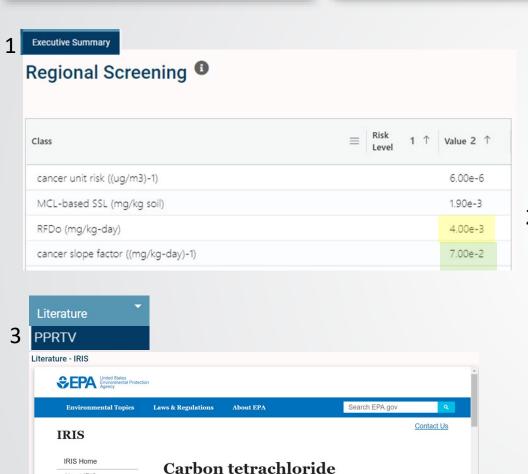
Measured values: EPA's ECOTOXicology Knowledgebase (ECOTOX) for studies on bioconcentration in plants and animals

≛ EXPORT ▼ Experimental					
Source ↓↑	≡ Result ↓↑	Experimental Details ↓↑			
PhysPropNCCT	7.41	Species: undefined; Response Site: undefined			
ECOTOX: aquatic	30.0	Species: Lepomis macrochirus; Response Site: Whole organism			
ECOTOX: aquatic	300	Species: Chlorella fusca var. vacuolata; Response Site: Whole organ			

About IRIS

IRIS Calendar

Contact Us

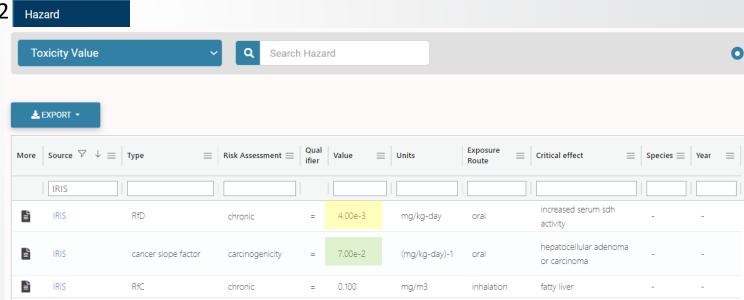

IRIS Recent Additions

IRIS Assessments
Advanced Search

IRIS Program Materials

Toxicity values

Three ways to find toxicity values


CASRN 56-23-5 | DTXSID8020250

Links

• Toxicological Review (PDF) (473 pp, 3.04 M)

• IRIS Summary (PDF) (20 pp, 363 K)

EPA often uses a cancer slope factor or a reference dose from the agency's Integrated Risk Information System (IRIS) as the toxicity factor

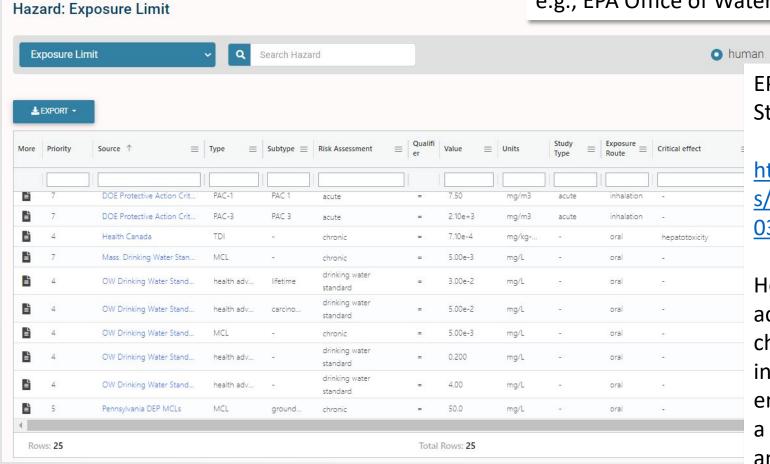
Clean Water Act Programs

The Clean Water Act requires EPA to develop criteria for surface water quality that accurately reflect the latest scientific knowledge on the impacts of pollutants on human health and the environment.

https://www.epa.gov/wqc

Current Water Quality Criteria Tables

- Aquatic Life Criteria Table
- Human Health Criteria Table
- Organoleptic Effects Criteria Table

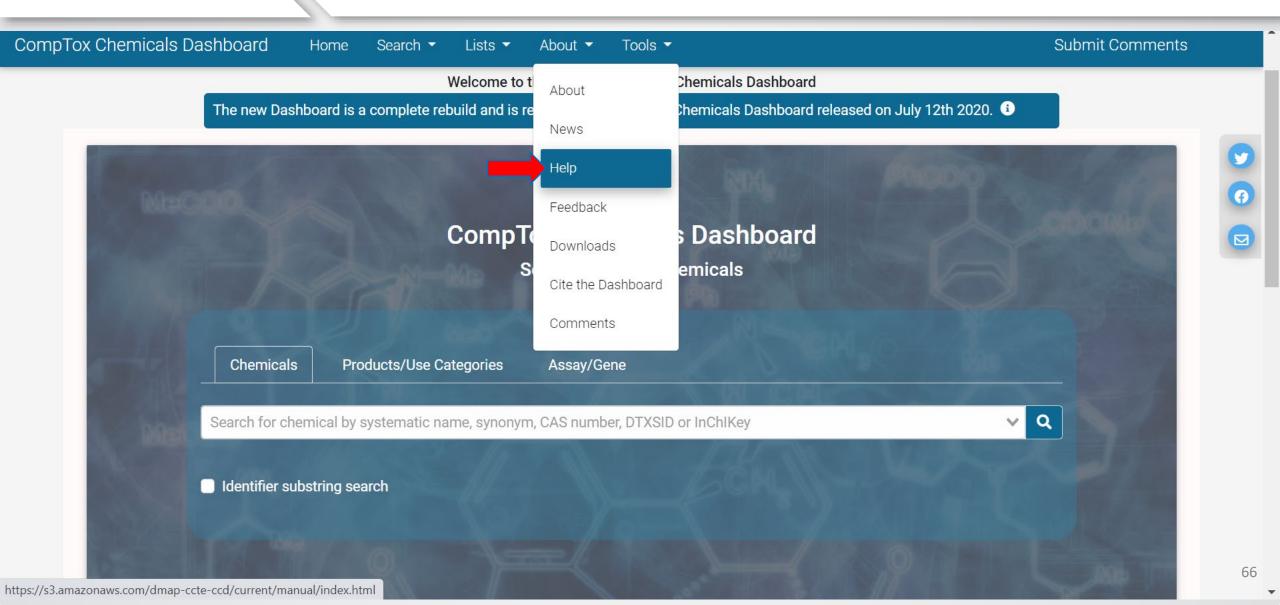

Values are publicly available to be adopted by states and other authorities

Pollutant	CAS Number	Human Health for the consumption of Water + Organism (μg/L)	Human Health for the consumption of Organism Only (μg/L)	Publication Year	Notes
Acenaphthene EXIT (P)	83329	70	90	2015	The criterion for organoleptic (taste and odor) effects may be more stringent. Refer to National Recommended Water Quality Criteria - Organoleptic Effects.
Acrolein EXIT (P)	107028	3	400	2015	
					This criterion is based on carcinogenicity of 10 ⁻⁶ risk. Alternate risk

Additional Hazard Exposure Limit Info

Water quality, air quality, and occupational exposure values
e.g., EPA Office of Water, Health Canada, State-specific information

EPA Office of Water Drinking Water Standards and Health Advisories (2018)


https://19january2021snapshot.epa.gov/site s/static/files/2018-03/documents/dwtable2018.pdf

Health Advisory Levels. An estimate of acceptable drinking water levels for a chemical substance based on health effects information; an HA is not a legally enforceable Federal standard, but serves as a technical guidance to assist Federal, State, and local officials.

https://www.epa.gov/ground-water-and-drinking-water

I can't remember how to...

https://s3.amazonaws.com/dmap-ccte-ccd/current/manual/index.html

Search EPA.gov

Q.

Environmental Topics

Laws & Regulations

About EPA

CCD Help Pages Introduction

Introduction

Common Navigational Tips

Searching CCD

Batch Search

Details

Executive Summary

Properties

Env. Fate/Transport

Hazard

Safety

ADME

Exposure

Bioactivity

Similar Compounds

GenRA

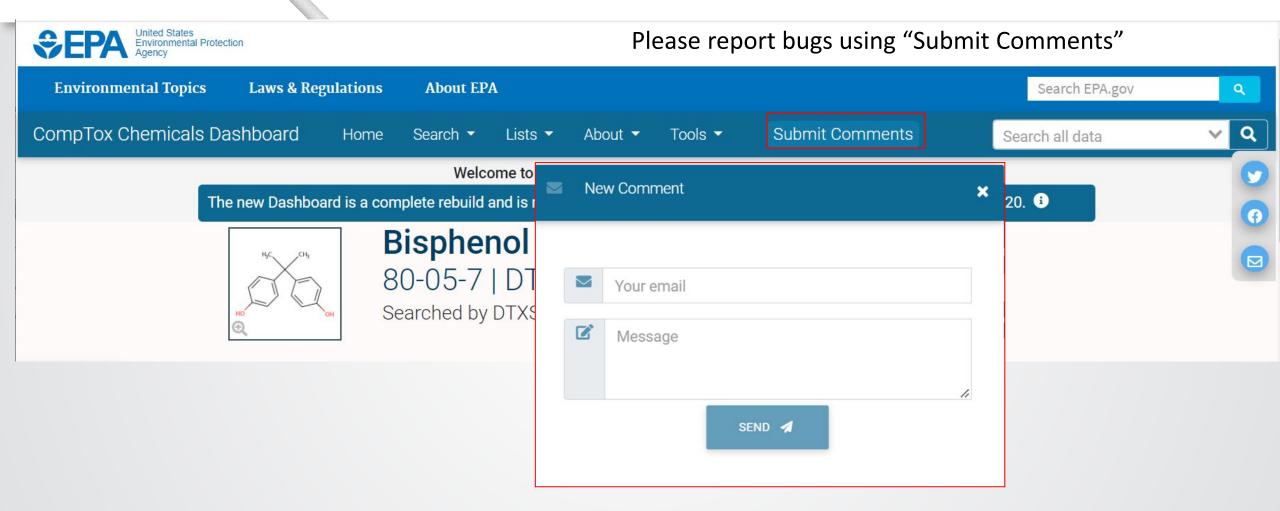
Related Substances

Synonyms

Literature

Links

The **CompTox Chemicals Dashboard** (hereafter the "Dashboard") is a publicly available web-based application developed by the US Environmental Protection Agency to provide access to chemistry, toxicity, and exposure information for hundreds of thousands of chemicals. The data and predictive models within the Dashboard support the Agency's efforts to identify bioactive chemicals to identify further testing needs, to support an Agency priority to accelerate chemical hazard assessment data acquisition and translate effects to protect human health and the environment. In addition, in silico models facilitate the prediction of hazard properties of chemicals for which in vivo data are not available.


The Dashboard is increasingly becoming a valuable resource for risk assessors tasked with the evaluation of potential human health risks associated with chemical exposures. In this context, the significant amount of information present in the Dashboard allows for:

- Assembly of information on chemical properties, environmental fate and transport, and exposure metrics.
- Identification of health effects from extant studies in the public domain and/or information not available in peer-reviewed literature (i.e., "grey literature").
- 3. Facilitation of systematic literature searching and review for developing hazard evidence bases.
- 4. Access to mechanistic information that can aid or augment the analysis of experimental animal bioassay or epidemiological evidence, or potentially, serve as the primary basis for informing hazard identification and dose-response when traditional bioassay data are lacking.

Finally, in silico predictive tools developed to conduct structure-activity or read-across analyses are also available within the Dashboard. The addition of new data and curation according to <u>our exacting processes</u> EXIT is ongoing and <u>multiple publications</u> represent the data, individual modules and applications of the Dashboard to solve various problems.

Comments

Acknowledgments

Efforts include many more than who are listed here

Many external collaborators provided data & links

Thanks to Diane Evans (Region 6), Katie Paul Friedman (ORD), Grace Patlewicz (ORD), and Antony Williams (ORD) for allowing me to adapt some of their material

EPA/ORD/Center for Computational Toxicology and Exposure

Relevant publications

Computational Toxicology

- Kavlock RJ, et al. Toxicol Sci. 2008;103(1):14-27.
- Kleinstreuer NC, Tetko IV, Tong W. Chem Res Toxicol. 2021;34(2):171-175.

CompTox Chemicals Dashboard

- Williams AJ, et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform. 2017 Nov 28;9(1):61.
- Lowe CN and Williams AJ. Enabling High-Throughput Searches for Multiple Chemical Data Using the U.S.-EPA CompTox Chemicals Dashboard. J. Chem. Inf. Model. 2021, 61, 2, 565–570. Publication Date: January 22, 202
- Williams AJ, et al. Sourcing data on chemical properties and hazard data from the US-EPA CompTox Chemicals Dashboard: A practical guide for human risk assessment. Environ Int. 2021 Sep;154:106566.

Chemistry – related references

- Grulke CM, et al. EPA's DSSTox database: History of development of a curated chemistry resource supporting computational toxicology research. Comput Toxicol. 2019 Nov 1;12:10.1016/j.comtox.2019.100096.
- Helman G, Shah I, Williams AJ, Edwards J, Dunne J, Patlewicz G. Generalized Read-Across (GenRA): A workflow implemented into the EPA CompTox Chemicals Dashboard. ALTEX. 2019;36(3):462-465.

Relevant publications

Ecotoxicology

- Olker JH, et al The ECOTOXicology Knowledgebase: A Curated Database of Ecologically Relevant Toxicity Tests to Support Environmental Research and Risk Assessment. Environ Toxicol Chem. 2022 Mar 9. doi: 10.1002/etc.5324. Epub ahead of print. PMID: 35262228.
- LaLone CA, et al. Editor's Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity. Toxicol Sci. 2016 Oct;153(2):228-45.

In Vitro to In Vivo Extrapolation (IVIVE)

- Wambaugh JF, et al. High throughput heuristics for prioritizing human exposure to environmental chemicals. Environmental science & technology. 2014;48(21):12760–7.
- Wambaugh, JF et al., 2015. Toxicokinetic Triage for Environmental Chemicals. Toxicol Sci., 147(1):55-67.
- Wetmore, BA, et al. 2015. Quantitative in vitro-in vivo extrapolation in a high-throughput environment. Toxicol. 332:94-101
- Pearce RG, Setzer RW, Strope CL, et al. httk: R Package for High-Throughput Toxicokinetics. J Stat Softw. 2017;79(4):1-26
- Rotroff, DM et al., 2010. Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening. Toxicol.
 Sci., 117 (2):348-358.
- Wilkinson RG, and Shand DG (1975). A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18, 377–389.

EPA's Toxics Release Inventory: https://awsedap.epa.gov/public/extensions/TRINA dashboard 2020/TRINA dashboard 2020.html

Relevant publications

Exposure

- Dionisio KL, et al. Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicol Rep. 2015 Jan 2;2:228-237.
- Isaacs KK, et al. Characterization and prediction of chemical functions and weight fractions in consumer products. Toxicol Rep. 2016 Sep 1;3:723-732.
- Phillips KA, et al. High-throughput screening of chemicals as functional substitutes using structure-based classification models. Green Chem. 2017;19(4):1063-1074.
- Dionisio KL, et al. The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Sci Data. 2018 Jul 10;5:180125.
- Isaacs KK, et al. Establishing a system of consumer product use categories to support rapid modeling of human exposure. J Expo Sci Environ Epidemiol. 2020 Jan;30(1):171-183.
- EPA's Toxics Release Inventory: https://awsedap.epa.gov/public/extensions/TRINA dashboard 2020/TRINA dashboard 2020.html
- Ring Cl et. al. Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways. Environ Sci Technol. 2019 Jan 15;53(2):719-732.