High-throughput phenotypic profiling (HTPP) of chemicalinduced changes in human neural progenitor cell morphology for developmental neurotoxicity (DNT) hazard assessment

Megan Culbreth, PhD

Office of Research and Development Center for Computational Toxicology & Exposure

Disclaimer

The views expressed in this presentation are those of the author and do not necessarily reflect U.S. EPA policy. Mention of any trade names does not constitute endorsement.

The current DNT in vitro battery (IVB) only includes Tier 2 assays

Process	Cell Type	Species	Reference
Proliferation	hNP1	human	Harrill et al., 2018
	NPC1	human and rodent	Baumann et al., 2016
	UKN1	human	Balmer et al., 2012
Apoptosis	hNP1	human	Harrill et al., 2018
Migration	NPC2	human and rodent	Baumann et al., 2016
	UKN2	human	Nyffeler et al., 2017
Neuron differentiation	NPC3	human and rodent	Baumann et al., 2016
Oligodendrocyte differentiation & maturation	NPC5/6	human and rodent	Baumann et al., 2016
Neurite outgrowth	iCell Gluta	human	Druwe et al., 2016
	UKN 4 & 5	human	Krug et al., 2013
	NPC4	human and rodent	Baumann et al., 2016
Synaptogenesis	Primary rat cortical	rodent	Harrill et al., 2018
Network Formation (MEA-NFA)	Primary rat cortical	rodent	Brown et al., 2016 and Frank et al., 2018

Modified from Sachana et al., 2019²

Tier 1 approaches are higher-throughput and do not require a known biological target

¹doi: 10.1093/toxsci/kfz058; ² doi: 10.193/toxsci/kfy211

High-Throughput Phenotypic Profiling (HTPP)

Hoechst 33342

Nucleoli (RNA) + Endoplasmic reticulum (ER)

SYTO14/Alexa 488

Actin cytoskeleton, Golgi apparatus, plasma membrane (AGP)

Alexa 568/555

Mitochondria

MitoTracker

Cell-level feature extraction

hNP1 human neural progenitor cells selected as initial model to optimize for HTPP

Nestin

Sox2

Hoechst

Hoechst

Composite

The method for HTPP of hNP1 cells has been established

ORIGINAL RESEARCH published: 16 February 2022 doi: 10.3389/ftox.2021.803987

Optimization of Human Neural Progenitor Cells for an Imaging-Based High-Throughput Phenotypic Profiling Assay for Developmental Neurotoxicity Screening

Megan Culbreth¹, Johanna Nyffeler^{1,2}, Clinton Willis¹ and Joshua A. Harrill¹*

¹Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States, ²Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN, United States

- Optimized high-throughput automation
 - 384-well plate coating
- Determined an appropriate plating density in 384-well plates
- Identified the minimum laminin concentration required for optimal cell growth and attachment
- Demonstrated antibiotic addition to the culture medium does not alter cellular morphology
- Selected applicable in-plate assay controls

The method for HTPP of hNP1 cells has been established

ORIGINAL RESEARCH published: 16 February 2022 doi: 10.3389/ftox.2021.803987

Optimization of Human Neural Progenitor Cells for an Imaging-Based High-Throughput Phenotypic Profiling Assay for Developmental Neurotoxicity Screening

Megan Culbreth¹, Johanna Nyffeler^{1,2}, Clinton Willis¹ and Joshua A. Harrill¹*

¹Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, United States, ²Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN, United States

- Optimized high-throughput automation
 - 384-well plate coating
- Determined an appropriate plating density in 384-well plates
- Identified the minimum laminin concentration required for optimal cell growth and attachment
- Demonstrated antibiotic addition to the culture medium does not alter cellular morphology
- Selected applicable in-plate assay controls

Reference chemical	Mechanism of action (MoA)	DNT-IVB	Anticipated phenotype	Reference
Aphidicolin	DNA polymerase inhibitor	Proliferation	Modification to DNA compartment	Unpublished data
Actinomycin D	Transcription inhibitor	Apoptosis	Modification to RNA compartment	Unpublished data
Etoposide	DNA Topoisomerase II inhibitor	Neurite outgrowth	Increased cell size	Willis et al., 20201

Modified from Culbreth et al., 2022

Reference chemical	Mechanism of action (MoA)	DNT-IVB	Anticipated phenotype	Reference
Aphidicolin	DNA polymerase inhibitor	Proliferation	Modification to DNA compartment	Unpublished data
Actinomycin D	Transcription inhibitor	Apoptosis	Modification to RNA compartment	Unpublished data
Etoposide	DNA Topoisomerase II inhibitor	Neurite outgrowth	Increased cell size	Willis et al., 20201

Modified from Culbreth et al., 2022

Aphidicolin has historically been utilized as a proliferation assay positive control in human neural progenitor cells

Aphidicolin selected as an HTPP in-plate assay control for hNP1 cells

Hoechst

Aphidicolin (10 µM)

Modified from Culbreth et al., 2022¹

Reference chemical	Mechanism of action (MoA)	DNT-IVB	Anticipated phenotype	Reference
Aphidicolin	DNA polymerase inhibitor	Proliferation	Modification to DNA compartment	Unpublished data
Actinomycin D	Transcription inhibitor	Apoptosis	Modification to RNA compartment	Unpublished data
Etoposide	DNA Topoisomerase II inhibitor	Neurite outgrowth	Increased cell size	Willis et al., 20201

Modified from Culbreth et al., 2022

Actinomycin D was previously utilized as an apoptosis assay positive control in human neural progenitor cells

Phenotypic effects of Actinomycin D could <u>not</u> be modeled due to overt cytotoxicity

Propidium iodide (PI)

<figure><figure><figure>

	Benchmark Concentration (µM)		
Normalized cell count	0.00767		
PI-positive cells	0.0000496 ┥	Below tested	

p53 and Caspase 3 activated in apoptosis assay

Reference chemical	Mechanism of action (MoA)	DNT-IVB	Anticipated phenotype	Reference
Aphidicolin	DNA polymerase inhibitor	Proliferation	Modification to DNA compartment	Unpublished data
Actinomycin D	Transcription inhibitor	Apoptosis	Modification to RNA compartment	Unpublished data
Etoposide	DNA Topoisomerase II inhibitor	Neurite outgrowth	Increased cell size	Willis et al., 20201

Modified from Culbreth et al., 2022

Etoposide inhibited neurite outgrowth of human IPSC-derived neurons

Etoposide altered hNP1 cellular phenotype below the threshold of effect on neurite outgrowth

DMSO

Etoposide o.333 μM

Conclusions

- hNP1 human neural progenitor cells are amenable to an HTPP approach for chemical prioritization
- Historic DNT-IVB positive control compounds exhibited variable phenotypic effects
 - Aphidicolin altered the DNA compartment below the threshold for effects on cell proliferation
 - Actinomycin D was overtly cytotoxic relative to previous results
- An HTPP approach potentially can be utilized to identify compounds previously detected in DNT-IVB assays with other cell types
 - Etoposide induced phenotypic effects below the EC₃₀ for neurite outgrowth

Future Directions

• Screen approximately 300 DNT-relevant compounds in the HTPP approach

DNT-relevant chemical list	Number of compounds
EFSA_OECD	132
NTP91	75
GRADN	56
MARTIN_NEGATIVES	36
OP_LIST	28
DNTP_NEUROTOX_HEI	71
CARSTENS_SHAFER_LAB	76
SUBSTITUTIONS_AND_ADD_ONS	8
MICROTUBULE_MODULATORS	14
RAR_AGONISTS	4
GR_AGONISTS	8

- Determine HTPP approach sensitivity and specificity relative to DNT-IVB assays
- Extrapolate phenotypic effects to historical *in vivo* and human DNT data

Acknowledgments

Joshua Harrill Johanna Nyffeler Clinton Willis Felix Harris Gabby Byrd

Tim Shafer Kelly Carstens Melissa Martin Theresa Freudenrich Kathleen Wallace Kimberly Slentz-Kesler Sid Hunter

