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Context: cell-based in silico models for biosimulation and predictive toxicology

* VVast collections of bioactivity data from in vitro chemical profiling
(ToxCast/Tox21) now in hand (https://comptox.epa.gov/dashboard).

* These datasets provide a resource to examine cellular and molecular
determinants of organ-specific toxicity (but are convoluted).

* Integrative models are needed to drive biomolecular lesion(s) into
higher levels of biological organization for mechanistic prediction.

Virtual reconstitution of a self-organizing system from unidimensional data (embryogeny)
remains a challenge for consideration of biological plausibility for causation.



https://comptox.epa.gov/dashboard

Purpose-built in silico microsystems: autonomous cellular ‘agents’ in a
shared microenvironment that can sustain a biological processes.

Anatomical homeostasis in a
self-requlating ‘Virtual Embryo’
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* Morphogenesis is a complex process that causes a tissue to
develop its shape from a genetic blueprint and self-
regulating (autopoietic) spatial distribution of cells.

* Of paramount importance:
- genetic, environmental factors influencing cell fate decisions
- mechanisms by which they are executed
- biomechanical forces at the cellular level
- multicellular coordination.

Cellulome: characterization of the network of cells that

form an organ system is central for understanding it’s
development and disease.




Cellular Agent-Based Models (ABMs)

* Nature-inspired agents (cells) and rules (behaviors) are set into motion as a self-organizing virtual
system, using an open-source modeling environment (CompucCell3d.org).

e Soft-computing uses ‘fuzzy logic’ to simulate forces or properties governing cell activity where rules
are inexact or knowledge incomplete (computational intelligence).

 (Can change course in response to a particular situation or stimulus, such as genetic errors or
biomolecular lesions fed into the dynamic model from real world data (mechanistic causation).

* Probabilistic rendering of where, when and how a particular condition might lead to an adverse
developmental outcome (cybermorphs).

Computational Morphodynamics: using computational intelligence and quantitative
simulation to establish mechanistic causation in modeling the organ-specific effects of
drugs and chemicals (toxicodynamics).




Gastrulating embryo: remarkable example of a self-organizing system

* The molecular biology and behavior of hPSCs in culture most closely
E"’;‘ﬂ"‘d resembles the epiblast of an early embryo during ‘gastrulation’.
y
* An anatomical hallmark of gastrulation in Mammals is the primitive
§| streak through which the genomic body plan is established.
Epiblast S
s| * Cell migration through the primitive streak is essential for spatial
organization, regional specification, and lineage determination.
o * Although cultured hPSCs can form most cell types in the fetus they
P;'t"r";:"k'e lack positional information of an intact epiblast.
"It is not birth, marriage, or death, but gastrulation which is truly
the most important time in your life.” - Lewis Wolpert




Engineered in vitro microsystems
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iPSC-derived microsystems can self-organize
at least some positional information.

Example: colinear Hox gene expression in
‘gastruloids’ forming from mESC-aggregate.
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Zheng et al. (2019), Nature

Synthetic epiblast reacts to microfluidic
gradients (but no primitive steak forms).

Example: restoring FGF2-BMP4 signaling
polarizes a synthetic epiblast from hPSCs.



Computational (in silico) epiblast microsystem
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* FGF-BMP signaling network drives cell migration
through the primitive streak 2 mesoderm.

* Timing sets HOX clock for ‘decoding the genomic

blueprint of the fetal body plan’. \ FGF signaling slows the Hox clock

« ABM can ‘recode the genomic blueprint of the (4.9_11 15 @5000 MCS)

fetal body plan’ for evaluating chemical effects.

K Barham, R Spencer (work in progress)



Dynamic knowledge representation: early limb-bud outgrowth
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Cybermorphs: in silico toxicodynamics

Early limb development Synthetic dose response Hacking the network Tweaking the ABM
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Hacking the model: medial edge epithelium (MEE) seam breakdown

K Sulik, University of North Carolina
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Virtual microscope: cell signaling (kinematics) and consequences (dosimetry)

pre-critical dose post-critical dose

Captan Concentration 6/16 - E13.1 Caplan Concentration 7/16 - E13.1
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Leung et al. (2016), Reproductive Toxicology



Androgen disruption: closure rates @4000 MCS [ androgen supply

Increased incidence of urethral plate closure defect @ BRR = 33%

i o

Multi-disturbance plot simulating three
individual risk factors for hypospadias:

- genetics (eg, FGFR polymorphism)

- metabolism (eg, ATRA alters SHH, FGF)
- environmental (eg, androgen disrupters)

Leung et al. (2016) Reproductive Toxicology
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Microglial dynamics: blood-brain barrier development

Neural tube NVU/BBB
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Synthetic NVU microsystems: microglial-vascular-neuronal integration

Summary plots - Representative samples only
10+

Mancozeb: profile from ToxCast dashboard
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 Critical effect observed in an engineered PNVP microsystem for ¢

microglial migration (LEL = 0.3 uM) [Kaushik et al. (2020)].

Microglia Migration into Neural Layer




ABMS for in silico toxicodynamics

 Computational approach to integrate information generated at one level of biology with
concurrent parallel processes to identify critical phenomena in a complex system.

» Different cell types ‘inhabit’ preorganized structures that resemble tissues and self-
organize into emergent phenotypes with minimal explicit programming.

 Dynamic knowledge representation executed bottom-up (agent-by-agent, interaction-
by-interaction) tests veracity of presumed mechanismes.

e A fully computable synthetic embryo (‘synbryo’) may be a distant goal, but modular
systems bring spatial biology to life to pinpoint critical phenomena through a virtual lens.
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Food for thought ...

Translational: what do synthetic microsystems of human development - both
computational and organoids - bring to future of DART testing?

Investigational: how smart must these models be to support decision-making in the
animal-free (3Rs) zone?

Operational: what best practices are needed to implement mechanistic predictions from
synthetic microsystems into an integrative decision framework?

Communication: what are the practical considerations for science, engineering, and
stakeholder engagement (academics, government, industry, NGOs, policy, ...)?
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