

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

An inter-laboratory case study to determine the added value of the zebrafish light-dark transition test to predict developmental neurotoxicity: Report from OECD DNT Expert Group

Ellen Hessel

Why Study Developmental Neurotoxicity?

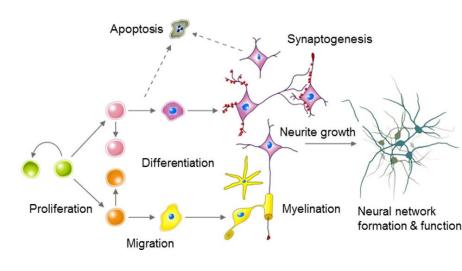
- Prevalence of developmental neuronal disorders is increasing
- Role of chemical exposure is almost unknown
- The developing central nervous system (CNS) has a different susceptibility to chemical-induced injury than the adult CNS.
- CNS development is a complex process involving many different events within strictly controlled time frames and therefore each event might create a different window of vulnerability to chemical exposure.

Regulatory need for DNT

Current test guidelines: OECD-426 and 443

- Very expensive and time consuming
- Human relevance unknown
- Only 150 compounds tested

Need for integrated testing battery for DNT


- Screening more chemicals
- As a first screening step for prioritisation
- Human relevance is essential
- Based on mechanistic knowledge and AOPs

OECD develops a guidance document for DNT

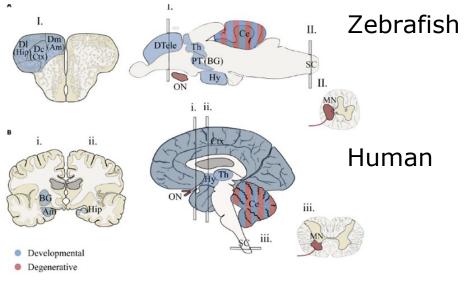
Background OECD guidance document (GD) - IATA

- Aim: description of an *in vitro test* battery for developmental neurotoxicity based on key processes.
 - How data could be interpreted and used to assess DNT.
- Outline an integrated approach to testing and assessment (IATA) for the purposes for screening and prioritization or for hazard assessment.
- The Zebrafish behavioral assay could be one of the *tests*.

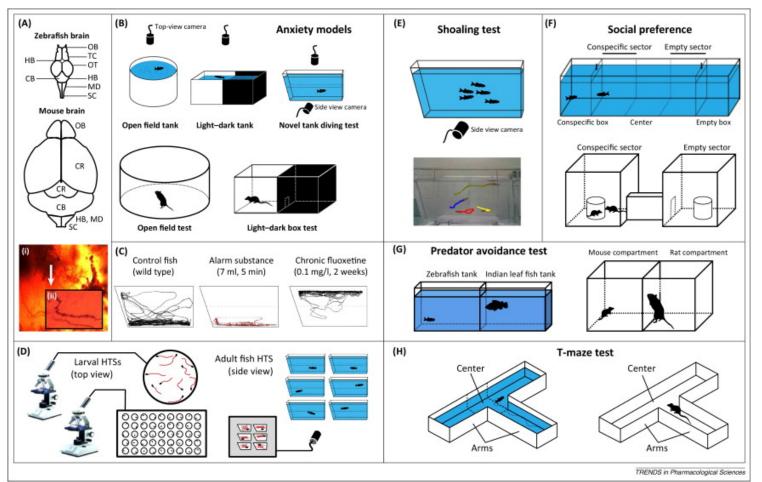
Aschner et al., 2017

Added value zebrafish

- Small fish used >4 decades in pharmaceutical research
 - Easy husbandry + strong historical database
- High human relevance
 - ~70% gene concordance; 80% concordance with drug targets
- Higher throughput
 - Many embryos + shorter life stages
- Embryos are transparent
 - Ease of internal observations
- Greater statistical power Large replicates (12 embryos)

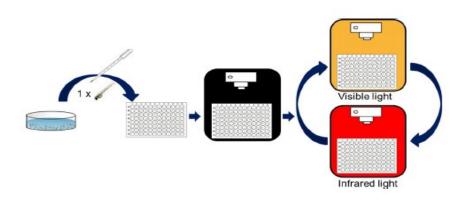

e.g. 3 reps = 3x12 = 36 embryos/dose

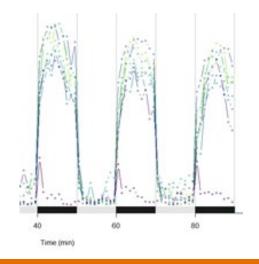
Added value zebrafish for DNT


- Complete and complex neuronal network (brain).
- Occurs within 3 days post-fertilization (dpf).
- Brain regions are well-conserved
- Neuronal subtypes well-conserved
- Zebrafish develops a blood brain barrier (BBB)
- Thyroid axis is present and affects brain development

Kozol et al., 2016

Examples DNT behavioral assays zebrafish




7 Kallueff et al., 2014

Light/dark transition (L/D) test

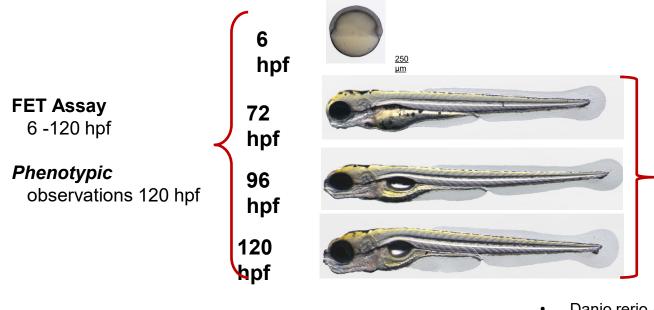
- Alternating light and dark periods
- 4 5 dpf
- Locomotor activity measured
 - Distance
 - Speed
 - Timing and area of movement
- Increased activity during the short dark phase and less activity during the light phase

Goals of this case study

- Current goal determine the added value of the L/D zebrafish assay for DNT
 - Design a harmonized protocol
 - Determine inter-laboratory reproducibility by performing a case study in different laboratories
 - Discuss the results and protocol
- Next goal determine the added value of the LD zebrafish test the guidance document / IATA

Institutes and people involved

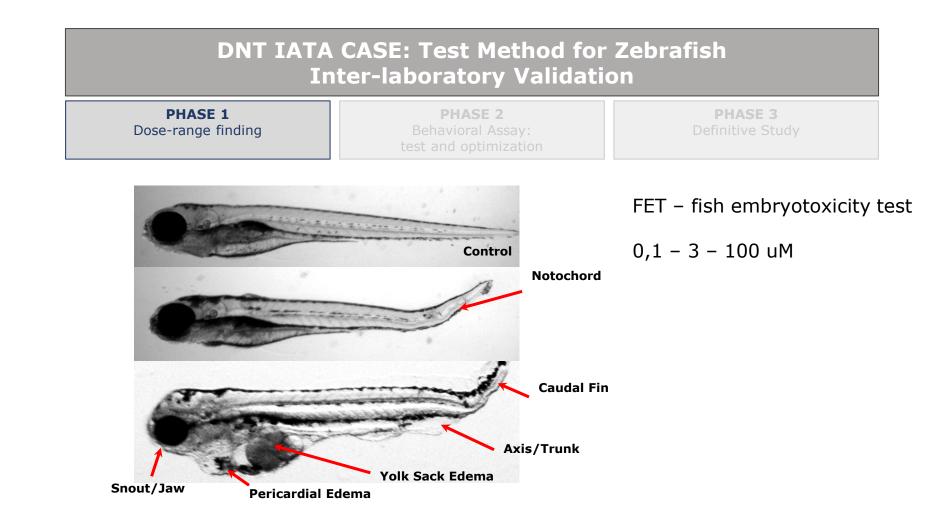
Institute	People
U.S. Environmental Protection Agency	Bridgett Hill
	Stephanie Padilla
	Tim Shafer
Oregon State University	Lisa Truong
	Robyn Tanguay
Division of the National Toxicology Program, National	Jui-Hua Hsieh
Institute of Environmental Health Sciences	Kristen Ryan
	Mamta Behl
National Research Council of Canada	Lee Ellis
ZeClinics, Barcelona	Valentina Schiavone
	Davide Rubbini
	Javier Terriente
Biobide	Ainhoa Alzualde
	Arantza Muriana
VU University Amsterdam	Jessica Legradi
Health Canada / Government of Canada	Cindy Woodland
Organisation for Economic Co-operation and Development (OECD)	Magdalini Sachana
European Commission -DG Joint Research Centre	Anna Price
Helmholtz Centre for Environmental Research GmbH - UFZ, Germany	Nils Klüver
National Institute for Public Health and the Environment (RIVM)	Ellen Hessel



Material and Methods – Case Study

2 protocols:

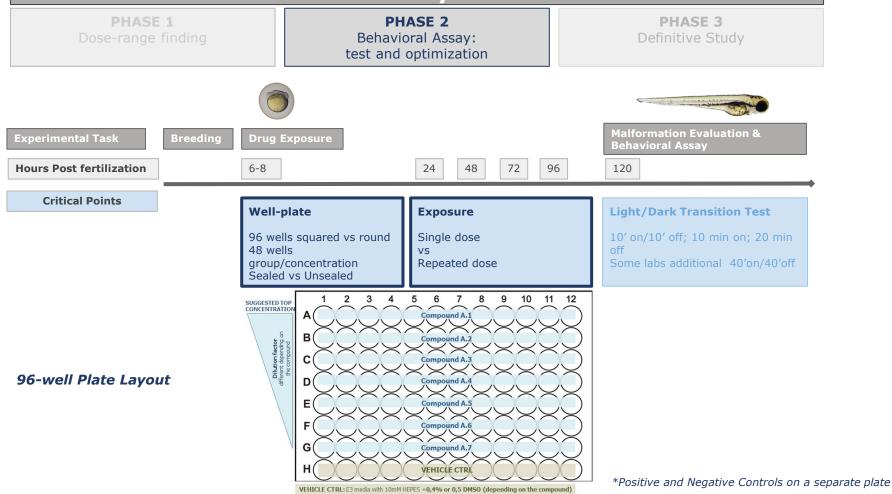
FET - Fish Embryo Toxicity test (phase 1) **light-dark transition test** (phase 2)


Phenotypic observations 120 hpf

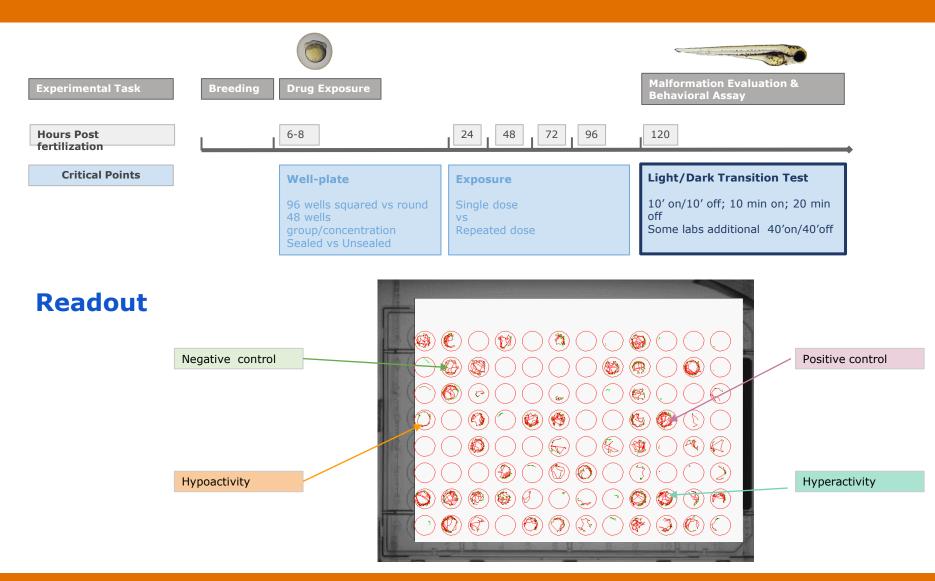
Behavioural 120 hpf distance travelled in light dark "startle" response

- Danio rerio AB strain
- 96 well forma round vs squared
- Chorionated embryos FET
- Buffered media (10 mM pH7.2 HEPES E3 media)
- Static exposure
- 28°C, 14hr:10hr (light:dark)
- DMSO max. 0.4%

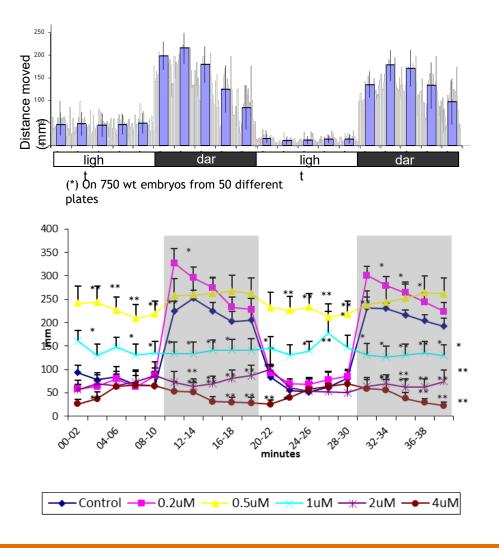
Study design



13

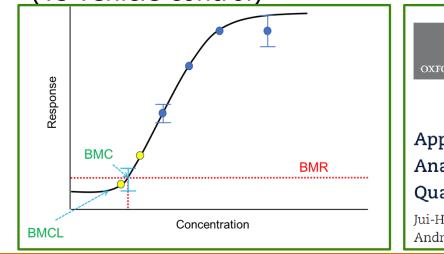


DNT IATA CASE: Test Method for Zebrafish Inter-laboratory Validation


Protocol - 28 compounds

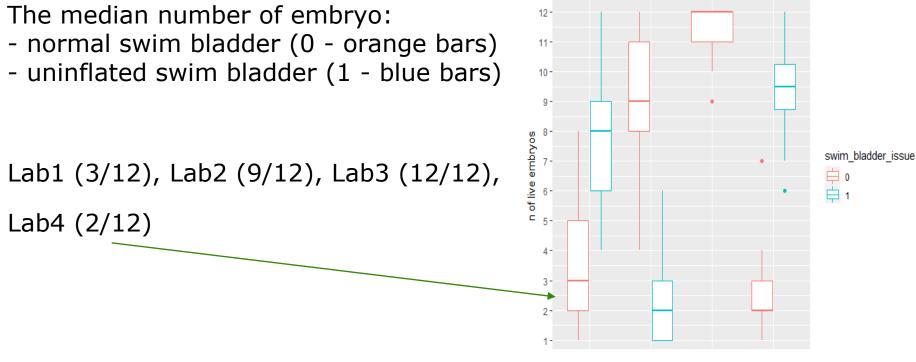
Chemical Name	CAS	Chemical Name	CAS
3,3',5,5'-Tetrabromobisphenol A	79-94-7	tert-Butylphenyl diphenyl phosphate	56803-37-3
Acetamiprid	135410-20-7	2-Ethylhexyl diphenyl phosphate	1241-94-7
Allethrin	584-79-2	Aldicarb	116-06-3
Benomyl	17804-35-2	Chloramben	133-90-4
Diazinon	333-41-5	Chlorpyrifos	2921-88-2
Heptachlor	76-44-8	Cypermethrin	52315-07-8
Nicotine	54-11-5	Deltamethrin	52918-63-5
Parathion	56-38-2	Dieldrin	60-57-1
Permethrin	52645-53-1	Dimethoate	60-51-5
Trichlorfon	52-68-6	Kepone	143-50-0
Triphenyl phosphates isopropylated	68937-41-7	Methyl parathion	298-00-0
Tris(1,3-dichloro-2-propyl) phosphate	13674-87-8	Thiacloprid	111988-49-9
Tris(2-chloroethyl) phosphate	115-96-8	Tri-o-cresyl phosphate	78-30-8
Tris (2-chlorois opropyl) phosphate	13674-84-5	Tris (methylphenyl) phosphate	1330-78-5

Example of the data


- DNT data
 - Distance moved (every minute)
 - Velocity (every minute)
- Morphology data
 - Morphological Change/Dead observed
 - Swim_Bladder_Issue
 - Larvae included Y/N

Data analysis

- Application of benchmark dose (BMD) modeling
 - Focus on dose-response trend and onset of the response
 - Used in quantitative risk assessment
- Evaluate the <u>direction</u> and <u>amount</u> of movement during light/dark stimulation (vs vehicle control)
- Evaluate the similarity of the movement <u>pattern</u> across experiment (vs vehicle control)



Quantifying Toxicity in Alternative Animal Models

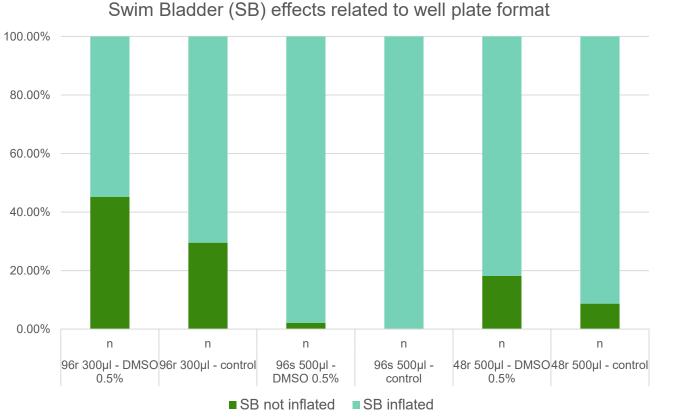
Jui-Hua Hsieh,^{*,1} Kristen Ryan,[†] Alexander Sedykh,[‡] Ja-An Lin,[§] Andrew J. Shapiro,[†] Frederick Parham,[†] and Mamta Behl[†]

Median number of embryos without swim bladder issue varies between laboratories



Round 96 well plate, 150 µl Data could not be used!

19 Data analysis Jui-Hua Hsieh (NTP)

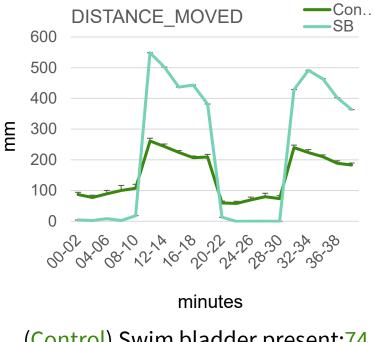

Significant distance moved difference between embryos with and without swim bladder issue

- Mean shift to the right (larger movement), especially in D phases for embryos with swim bladder issue
- Larger movement variation in L phases
- Difference is significant (Wilcoxon test) except zeclinics:L1 and zeclinics:L2

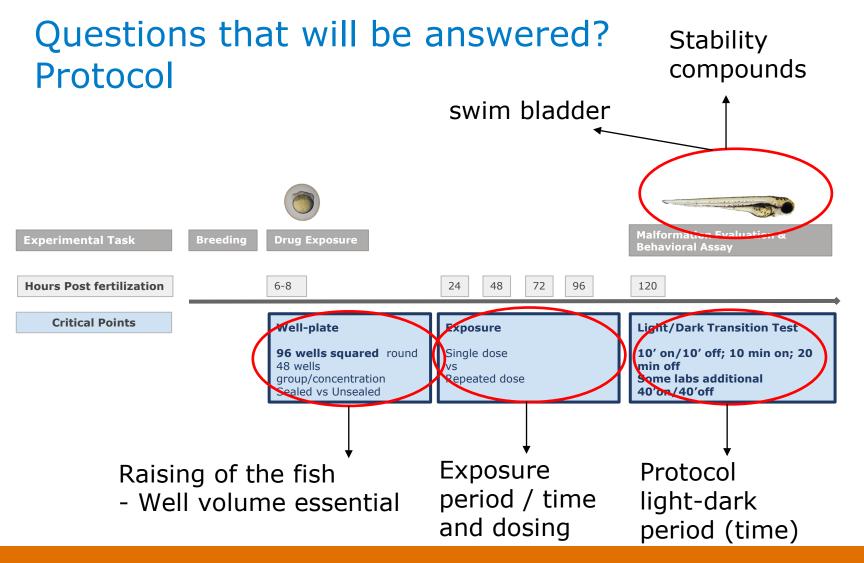
Swim bladder issue affected by well volume

r = round S= squared Total 12 / group

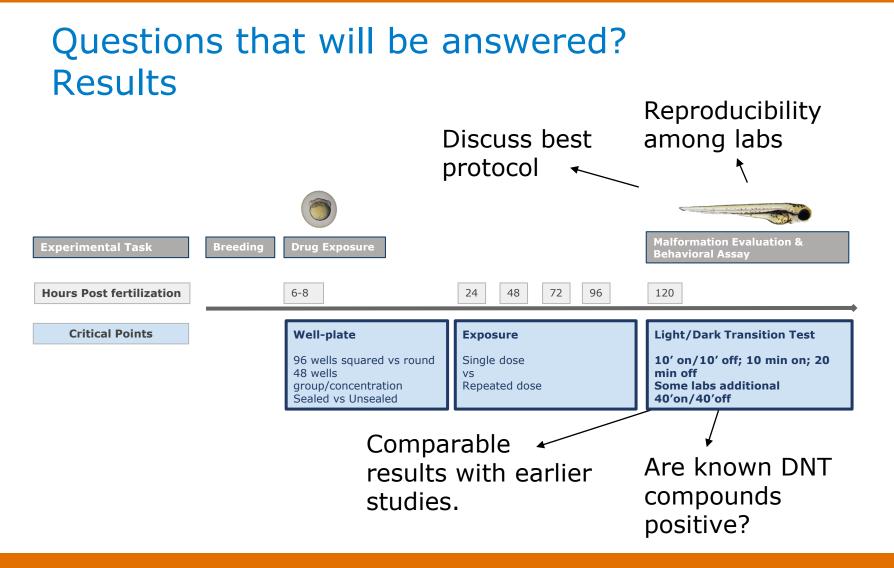
EXPERIMENT #1


The plates were not sealed

Round 96 well plate - 300 uL


(Control) Swim bladder present:71 (SB) Swim bladder absent: 15

Square 96 well plate - 600 uL



(Control) Swim bladder present:74 (SB) Swim bladder absent: 1

Take home messages pilot study

- Zebrafish behavior models can have an added value to the OECD guidance document for DNT.
- Volume in well plate affects swim bladder inflation
- Harmonization of the protocol is essential
- Inter-laboratory replication is a challenge
- Key players in the field are working together to develop a harmonized protocol for the light-dark transition test.
- In future protocols for other zebrafish behavioral tests for DNT can be harmonized.

Acknowledgements

Institute	People
U.S. Environmental Protection Agency	Bridgett Hill
	Stephanie Padilla
	Tim Shafer
Oregon State University	Lisa Truong
	Robyn Tanguay
Division of the National Toxicology Program,	Jui-Hua Hsieh
National Institute of Environmental Health Sciences	Kristen Ryan
	Mamta Behl
National Research Council of Canada	Lee Ellis
ZeClinics, Barcelona	Valentina Schiavone
	Davide Rubbini
	Javier Terriente
Biobide	Ainhoa Alzualde
	Arantza Muriana
VU University Amsterdam	Jessica Legradi
Health Canada / Government of Canada	Cindy Woodland
Organisation for Economic Co-operation and	Magdalini Sachana
Development (OECD)	
European Commission -DG Joint Research Centre	Anna Price
Helmholtz Centre for Environmental Research GmbH	Nils Klüver
- UFZ, Germany	
National Institute for Public Health and the	Ellen Hessel
Environment (RIVM)	

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA