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ORD Facility in
Research Triangle Park, NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
• 543 peer-reviewed journal articles in 2019

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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Calculating Chemical Risk

High throughput risk prioritization based upon in vitro screening 
requires comparison to exposure  (for example, NRC, 1983)
Data obtained in vitro must be placed in an in vivo context: 

in vitro-in vivo extrapolation (IVIVE) 

 Information must be relevant to the scenario, for example, 
consumer, ambient, or occupational exposure. 

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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Toxicokinetics

 Chemical-specific
 Links exposure with internal concentrations

Breen et al. (2021)

Exposure

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

in vivo 
TK data

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

 Toxicokinetics describes the absorption, distribution, metabolism, and 
excretion of a chemical by the body:
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In Vitro-In Vivo Extrapolation (IVIVE)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

in vivo 
TK data

Breen et al. (2021)
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 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals
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Figure from Bell et al. (2018)

Most Chemicals lack Toxicokinetic Data
 Most non-pharmaceutical chemicals – for example, flame retardants, plasticizers, 

pesticides, solvents – do not have human in vivo TK data. 
 Non-pesticidal chemicals are unlikely to have any in vivo TK data, even from animals
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High Throughput Toxicokinetics (HTTK)

 To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data 
(for example, Rotroff et al., 2010, Wetmore et al., 2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials
(Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) 
(for example, Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al., 2017a)
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In Vitro-In Vivo Extrapolation (IVIVE)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
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Toxicodynamic
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in vitro 
TK data

in vivo 
TK data

Toxicokinetic
IVIVE

Breen et al. (2021)

Chemical-specific data are 
steadily being generated 

by ORD laboratories 
(Barbara Wetmore),
EPA contractors and 

collaborators
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 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals
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High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

In vitro toxicokinetic data
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High Throughput Toxicokinetics (HTTK)

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

In vitro toxicokinetic data + generic toxicokinetic model 
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017a)

Ring et al. (2017)
Linakis et al. (2020)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Modules within R Package “httk”
Feature Description Reference

Chemical Specific In Vitro 
Measurements

Metabolism and protein binding for ~1000 
chemicals in human and ~200 in rat 

Wetmore et al. (2012, 
2013, 2015), plus 
others

Chemical-Specific In Silico 
Predictions

Metabolism and protein binding for ~8000 
Tox21 chemicals Sipes et al. (2017)

Generic toxicokinetic models
One compartment, three compartment, 
physiologically-based oral, intravenous, and 
inhalation (PBTK)

Pearce et al. (2017a), 
Linakis et al. (2020)

Tissue partition coefficient 
predictors Modified Schmitt (2008) method Pearce et al. (2017b)

Variability Simulator Based on NHANES biometrics Ring et al. (2017)
In Vitro Disposition Armitage et al. (2014) model Honda et al. (2019)

Uncertainty Propagation Model parameters can be described by 
distributions reflecting uncertainty

Wambaugh et al. 
(2019)
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

In Vitro - In Vivo Extrapolation (IVIVE)

 HTTK allows in vitro-in vivo extrapolation (IVIVE) 
– the use of in vitro experimental data to predict 
phenomena in vivo. 

slide modified from one by Barbara Wetmore
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

In Vitro - In Vivo Extrapolation (IVIVE)

 IVIVE-PK/TK 
(Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in 

body
 Considers absorption, distribution, 

metabolism, excretion (ADME)
 Can use empirical PK or  

physiologically-based (PBPK)

 HTTK allows in vitro-in vivo extrapolation (IVIVE) 
– the use of in vitro experimental data to predict 
phenomena in vivo. 

 IVIVE can be broken down into two components:

slide modified from one by Barbara Wetmore
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

In Vitro - In Vivo Extrapolation (IVIVE)

 IVIVE-PK/TK 
(Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in 

body
 Considers absorption, distribution, 

metabolism, excretion (ADME)
 Can use empirical PK or  

physiologically-based (PBPK)

 HTTK allows in vitro-in vivo extrapolation (IVIVE) 
– the use of in vitro experimental data to predict 
phenomena in vivo. 

 IVIVE can be broken down into two components:

 IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 Effect of molecules/chemicals at biological target in vivo
 Perturbation as adverse/therapeutic effect, reversible/ irreversible effects

slide modified from one by Barbara Wetmore
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“The Parallelogram Approach” (Sobels, 1982)

NRC (1998)Normalization of dose 
PBPK models

Comparative testing

Extrapolation 
using PD and 
PBPK models

Testable predictions

In Vitro - In Vivo Extrapolation (IVIVE)

 IVIVE-PK/TK 
(Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in 

body
 Considers absorption, distribution, 

metabolism, excretion (ADME)
 Can use empirical PK or  

physiologically-based (PBPK)

 HTTK allows in vitro-in vivo extrapolation (IVIVE) 
– the use of in vitro experimental data to predict 
phenomena in vivo. 

 IVIVE can be broken down into two components:

 IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 Effect of molecules/chemicals at biological target in vivo
 Perturbation as adverse/therapeutic effect, reversible/ irreversible effects

HTTK only covers toxicokinetic extrapolation

slide modified from one by Barbara Wetmore
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𝐀𝐀𝐀𝐀𝐀𝐀 = 𝑭𝑭𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 × [𝑿𝑿]

 There are many approaches to IVIVE, but we choose a relatively simple one:
 We make various assumptions that allow conversion of an in vitro concentration [𝑿𝑿] (µM) 

into an administered equivalent dose (AED) with units of mg/kg body weight/day:

 AED is the external dose rate that would be needed to cause a given steady-state 
plasma concentration

 FIVIVE is a scaling factor that varies by chemical

IVIVE by Scaling Factor
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IVIVE by Scaling Factor

 For a given chemical, FIVIVE = 1 / Css,95

 Css,95 is the steady-state plasma concentration as the result of a 1 mg/kg/day exposure

 The “95” refers to the upper 95th percentile – due to human variability and 
measurement uncertainty there are a range of possible Css values

 All of this assumes that the individuals have enough time to come to “steady-state” 
with respect to their daily exposures

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗

µ𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏

𝑴𝑴𝑴𝑴
𝒎𝒎𝒎𝒎
𝑳𝑳

Don’t forget:
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built into 
R “httk” package (Pearce et 
al., 2017):

Sample CDC National Health 
and Nutrition Examination 
Survey (NHANES) biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Slide from Caroline Ring
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Population simulator for HTTK

Ring et al. (2017)

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 
(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Slide from Caroline Ring

Correlated Monte Carlo 
sampling of physiological 
model parameters built into 
R “httk” package (Pearce et 
al., 2017):

Sample CDC National Health 
and Nutrition Examination 
Survey (NHANES) biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 
(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)Slide from Caroline Ring

Correlated Monte Carlo 
sampling of physiological 
model parameters built into 
R “httk” package (Pearce et 
al., 2017):

Sample CDC National Health 
and Nutrition Examination 
Survey (NHANES) biometrics 
for actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine
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Monte Carlo Sampling
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 Can be used for variability and uncertainty
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Variability

Different crayons 
have different 

colors…
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Variability

Different crayons 
have different 

colors, and none 
of them are the 
“average” color
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Uncertainty

Until I open the 
box, I don’t know 

what colors I 
have...

…especially if my 
nine-year-old has 

been around.
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Ring et al. (2017)

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)
CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey

IVIVE Allows Chemical Prioritization
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)

Exposure 
intake rates 
can be 
inferred from 
biomarkers 
(Wambaugh 
et al., 2014)

CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey

IVIVE Allows Chemical Prioritization
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)

Exposure 
intake rates 
can be 
inferred from 
biomarkers 
(Wambaugh 
et al., 2014)

IVIVE Allows Chemical Prioritization
CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey

Higher priority chemicals
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Life-stage and Demographic Specific Predictions
Change in Activity : Exposure Ratio

• We use HTTK to 
calculate margin 
between bioactivity and 
exposure for specific 
populations

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from in 
vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk

NHANES Demographic Groups

N
H

AN
ES C

hem
icals

Ring et al. (2017)
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HTTK on the CompTox 
Chemicals Dashboard

 The CompTox Chemicals Dashboard provides Css,95 values for >1000 chemicals

https://comptox.epa.gov/dashboard/

 We use EPA’s R package “httk” to provide 
IVIVE predictions

 The value reported is calculated assuming a 
1 mg/kg/day dose rate

 We give the upper 95th percentile of the 
calculated values based on a Monte Carlo 
simulation of human variability and 
uncertainty

https://comptox.epa.gov/dashboard/
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Conclusions

 HTTK allows dosimetric adjustment of high-throughput screening 
(HTS) data 

 Thousands of chemicals 

 Open source, free, and evaluated software

 HTTK accounts for human population diversity using biometrics from 
the CDC NHANES to predict toxicokinetic model parameters

 Variability is simulated using a Monte Carlo approach

 Breen et al. (in preparation) updates R package “httk” to the most 
recent three NHANES cohorts and adds children under the age of 6

 Toxicodynamic variability is not included

 HTTK in vitro parameters are generated from pooled adult tissues

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA
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