

Integration of Metabolic Competence with High-throughput Screening Assays

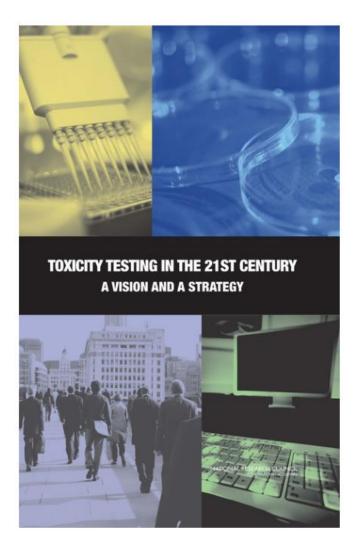
Chad Deisenroth, Ph.D. Center for Computational Toxicology and Exposure deisenroth.chad@epa.gov

Summer School on Innovative Approaches in Science June 8th, 2022

Disclaimer: The views expressed are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development Center for Computational Toxicology and Exposure

Chemical Safety Regulation – The Frank R. Lautenberg Chemical Safety for the 21st Century Act (2016)


- Amendment to the Toxic Substances Control Act (TSCA) of 1976, the nation's primary chemical management law.
- Mandatory requirement for the EPA to evaluate existing chemicals, establish risk-based safety standards, increase public transparency for chemical information, provide consistent source of funding for EPA to carry out responsibilities in the law.
- Section 4(h) in the new TSCA legislation requires
 - "...Administrator shall reduce and replace, to the extent practicable and scientifically justified...the use of vertebrate animals in the testing of chemical substances or mixtures..."
 - Alternative approaches need to provide "information of equivalent or better scientific quality and relevance..." than the traditional animal models.

U.S. EPA – Research Triangle Park, NC

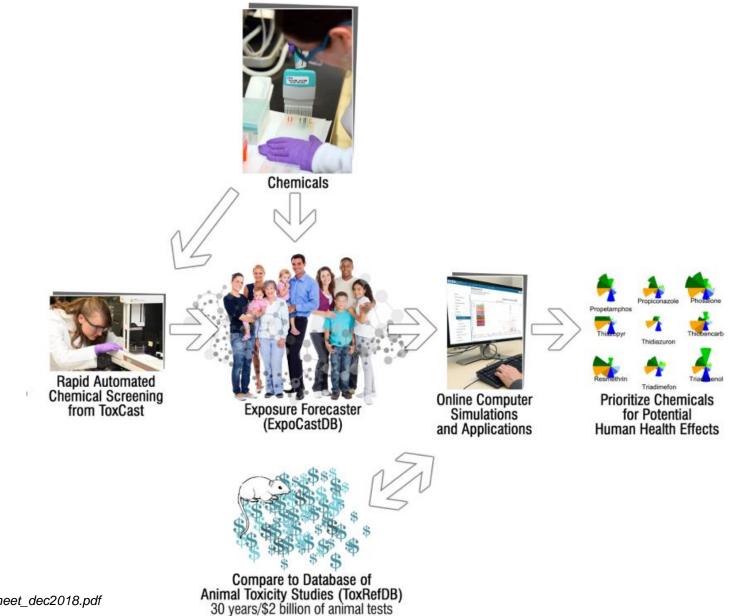
Toxicity Testing in the 21st Century

National Research Council released a report in 2007 calling for a genuine commitment to the reduction, refinement, and replacement of animal testing.

- Increase data relevance with human cell-based testing
- Speed up the data gathering process by transitioning away from animal models to high-throughput screening
- Focus on mechanisms of toxicity by integrating molecular biology with toxicology
- Incorporate elements of population susceptibility and exposure into every risk assessment
- Suggestions grounded in the political and economic landscape of global chemical testing

Chemical Risk Assessment and Management

	Hazard Identifi	cation				
	What potential health problems are caused by the substance? Who are the people exposed to the substance?	Dose-Response What are the health problems at different exposure levels?	Exposure Assessment Exposure Asse How much of the substance is present in the environment? Who are the		Other Factors	Risk Management
{ Toxicodyi		amics }		exposed population?	Political Social Economic Technical	exposure levels to protect human health and the environment


• Toxicokinetics (TK): the movement and fate of a substance after it enters the body. Links substance exposure to internal tissue concentrations.

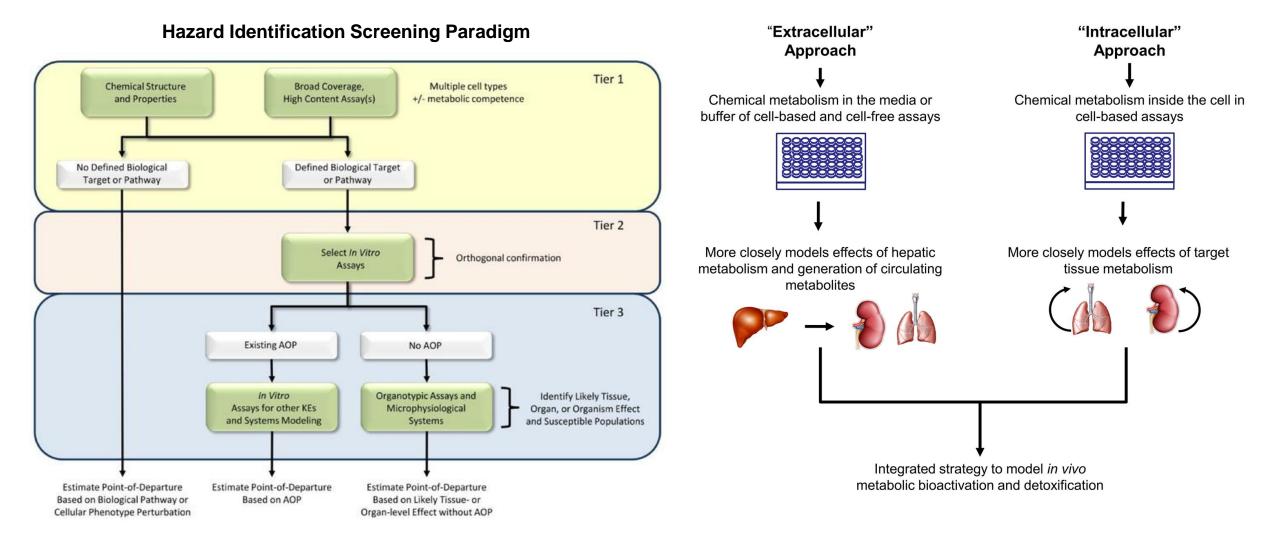
- Toxicodynamics (TD): interaction of a substance with a biological system. Links substance concentration to a biological response.
- Quantitative risk assessment evaluates hazard (TD), dose-response (TK/TD), and exposure (TK).

EPA Toxicity Forecaster (ToxCast[™]) Program

- Computational Toxicology (CompTox) research integrates advances in biology, biotechnology, chemistry, and computer science to identify potential chemical toxicants.
- Chemical dose and response can be extrapolated to a human exposure.
- The combined information helps prioritize chemicals based on potential human health risks.
- Using CompTox, thousands of chemicals can be quickly evaluated *in vitro* for potential risk.

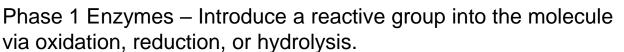
EPA New Approach Methods Work Plan: Reducing Use of Animals in Chemical Testing

Examples of information gaps

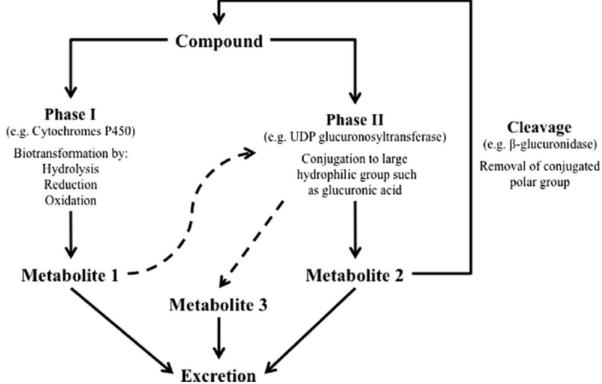

- Inadequate coverage of biological targets.
- Limited capacity to address tissue- and organ-level effects.
- Minimal capability for addressing xenobiotic metabolism in *in vitro* test systems.

Possible metabolism solutions

- Screen using computational predictions where possible.
- Retrofit *in vitro* assays with metabolic competence to identify metabolism-dependent effects and mechanisms of toxicity.


The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency

Liver Metabolism


- Hepatic metabolism is the biotransformation of an endogenous or exogenous molecule by one or more enzymes to metabolites that are more hydrophilic and easily eliminated from the body.
- Xenobiotic metabolism can produce metabolites that are more (bioactivation) or less (bioinactivated/detoxification) active than the parent molecule.

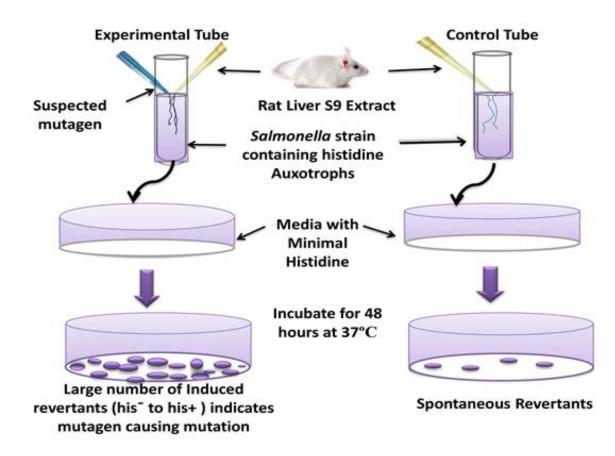
- Cytochrome P450s
- Serine Hydrolases

Phase II Enzymes – Transfer of polar groups (e.g. glucuronide, glutathione, sulfate) onto the products of Phase I metabolism.

- UDP-glucuronosyltransferases
- Glutathione S-transferases
- Sulfotransferases
- N-Acetyltransferases

Liver Metabolism: *In vitro* Tools

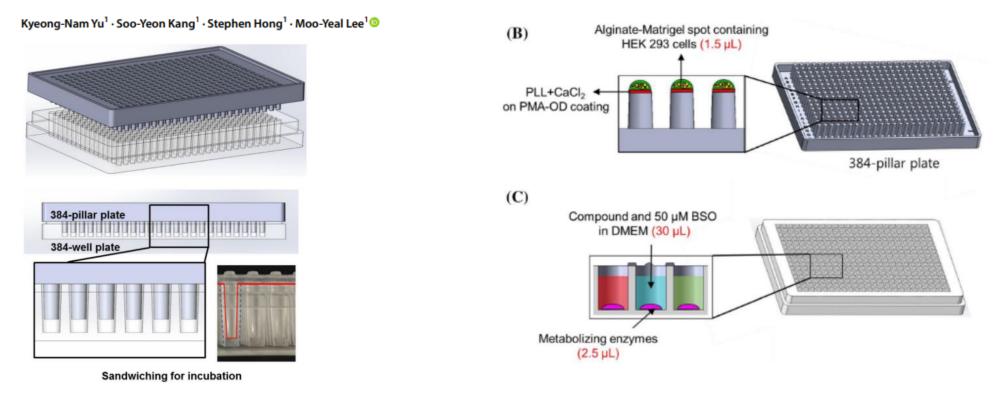
Many options.


- Why is liver metabolism relevant to the scientific problem?
- How well does the tool recapitulate liver metabolism?
- What is the intended application?
- Who will use the data?

doi: 10.3389/fcell.2021.626805

	Advantages	Limitations			
Subcellular fractions (Asha and Vidyavathi, 2010)	Drug enzyme activities preserved Production of metabolites for structural analysis	Only suitable for short-term studies No cytosolic phase II enzyme reactions Use for specific purposes only No physiological levels of enzymes			
Genetically engineered cells (Gomez-Lechon et al., 2008; Prakash et al.,	One or more human enzymes expressed Available mainly for CYPs				
2008) Hepatoma cell lines (e.g. HepG2, HepaRG) (Gerets et al., 2012; Sirenko et al., 2016)	High proliferation activity and good availability Stable metabolic performance Well characterized and abundant data available	Decreased drug enzyme activities Genotype instability			
Stem cell-derived hepatocyte-like cells (HLCs) (Hay et al., 2008; Takayama et al., 2014; Gao and Liu, 2017)	Good availability Analysis of genetic polymorphisms Drug testing with patient-specific cell lines for personalized medicine Characterization of differentiation/maturation processes for potential <i>in vitro</i> or clinical use Establishment of disease models	Costly differentiation protocols Incomplete hepatic differentiation Lack of standardized methods for cell differentiation and characterization			
Primary hepatocytes (Tostoes et al., 2011; Zeilinger et al., 2011, 2016; Bell et al., 2016; Pinheiro et al., 2017)	Obtained from whole livers or wedge biopsies Functions close to those of <i>in vivo</i> hepatocytes Suitable for interspecies and pharmacogenomic studies Induction/inhibition of drug metabolizing enzymes Representative of different lobular subpopulations Cryopreservation	Viability of 2-4 days in 2D cultures No bile canaliculus present Low human tissue availability Difficult recovery of cells and maintenance of function upon cryopreservation			
Co-cultures of hepatocytes and NPCs (Proctor et al., 2017; Hafiz et al., 2020; Nudischer et al., 2020)	Improves cells functionality Allows to study specific hepatic injury mechanisms involving different cell types Closer to <i>in vivo</i> microenvironment	Higher complexity Lack of standardized methods for cell culture limiting inter- laboratory comparisons			

Classic Application of *In vitro* Liver Metabolism in Toxicity Testing -Evaluating Mutagenic Potential with the Ames Test

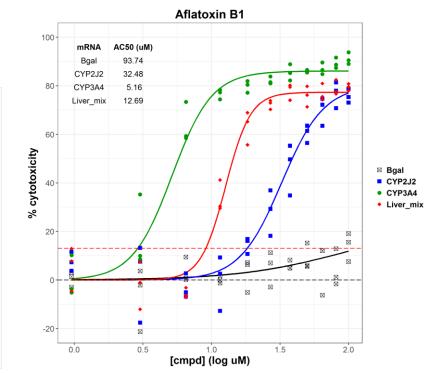


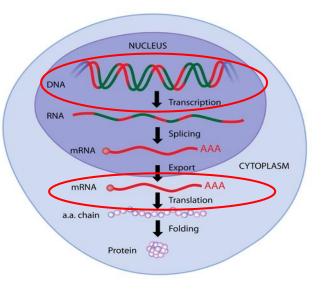
- The Ames test (or Bacterial Reverse Mutation test) is a biological assay to evaluate the mutagenic potential of chemical compounds.
- Subcellular liver fractions are commonly used to evaluate the function of parent compounds and metabolites.

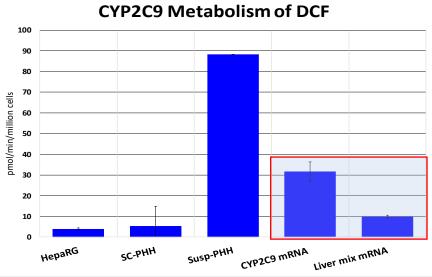
High-throughput metabolism-induced toxicity assays demonstrated on a 384-pillar plate

- Human embryonic kidney (HEK) 293 cells in a mixture of alginate and Matrigel were printed on 384-pillar plates for membrane integrity and viability assays.
- Recombinant human Cytochrome P450s and UGTs were independently evaluated for Phase I and II hepatic metabolism-dependent effects.
- Metabolism augmented toxicity for select reference chemicals and revealed mechanisms of biotransformation.

- Traditional DNA-based gene delivery methods use viral gene promoters to drive mRNA transcription.
- mRNA transfection is a novel approach that bypasses cellular DNA transcription.
- User-defined composition and ratios of multiple input mRNAs.

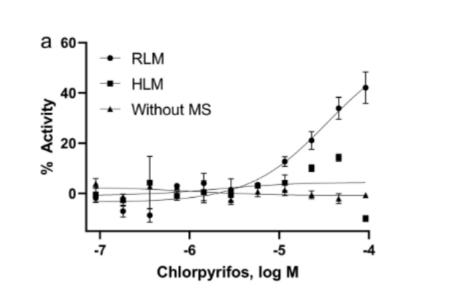


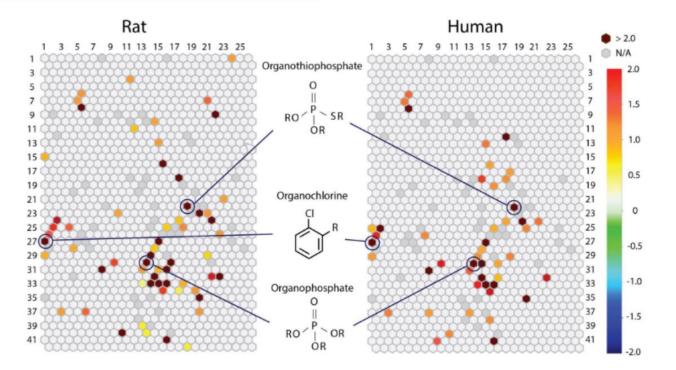

Journal of Pharmacological and Toxicological Methods Volume 92, July-August 2018, Pages 77-94



mRNA transfection retrofits cell-based assays with xenobiotic metabolism

Danica E. DeGroot ^a, Adam Swank ^b, Russell S. Thomas ^a, Mark Strynar ^c, Mi-Young Lee ^d, Paul L. Carmichael ^d, Steven O. Simmons ^a 은 III

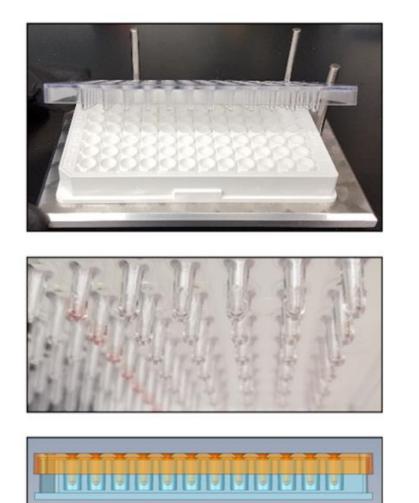


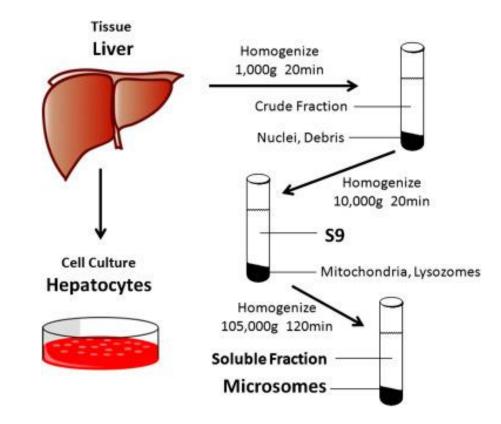


Toxicokinetics and Metabolism Open Access Published: 18 April 2022

Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation

Masato Ooka, Jinghua Zhao, Pranav Shah, Jameson Travers, Carleen Klumpp-Thomas, Xin Xu, Ruili Huang, Stephen Ferguson, Kristine L. Witt, Stephanie L. Smith-Roe, Anton Simeonov & Menghang Xia

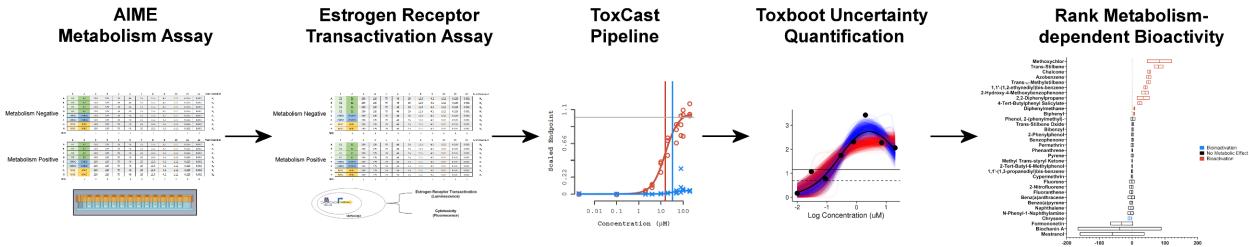




- Tox21 10K chemical library screened for metabolism-dependent effects in a p53 DNA damage assay for genotoxicity.
- Human (HLM) and Rat (RLM) liver microsomes added Phase I hepatic metabolism.
- *In silico* structural similarity analysis identified classes of chemicals that were bioactivated in rat and humans. (2022) doi: 10.1007/s00204-022-03291-5

The Alginate Immobilization of Metabolic Enzymes (AIME) Method

- AIME Method: The AIME platform consists of custom 96- or 384-well microplate lids containing solid supports attached to encapsulated hepatic S9-alginate microspheres.
- Application: Compatible with many biochemical and cell-based assays.



TOXICOLOGICAL SCIENCES, 178(2), 2020, 281-301

doi: 10.1093/toxsci/kfaa147 Advance Access Publication Date: 29 September 2020 Research Article

The Alginate Immobilization of Metabolic Enzymes Platform Retrofits an Estrogen Receptor Transactivation Assay With Metabolic Competence

Chad Deisenroth ,^{*,1} Danica E. DeGroot ,^{*,2} Todd Zurlinden ,^{*} Andrew Eicher,* James McCord ,^{*} Mi-Young Lee,^{†3} Paul Carmichael,[†] and Russell S. Thomas

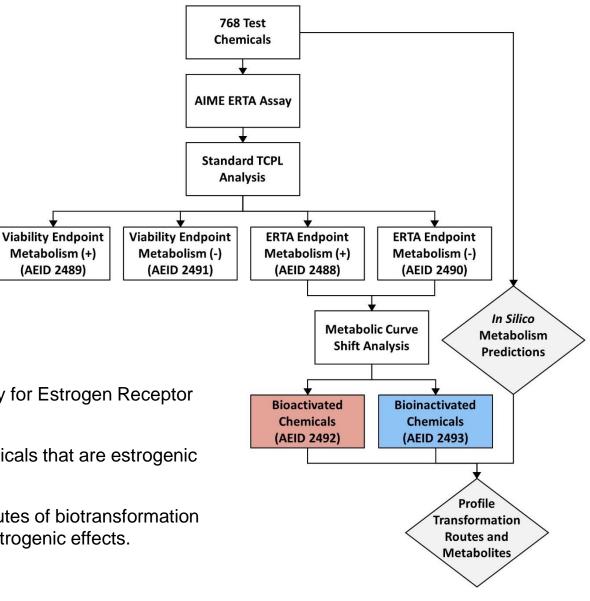
Study Highlights

- Reprioritization of hazard based on metabolism-dependent bioactivity.
- Demonstrated utility of applying the AIME method for identification of false positive and false negative target assay effects.
- Enhanced *in vivo* concordance with the rodent uterotrophic bioassay.

A AUC

	SOT	Society of				
	001	Toxicology				
OXFORD	academic.oup.com/toxsci					

TOXICOLOGICAL SCIENCES, 187(1), 202


https://doi.org/10.1093/toxsci/kfac019 Advance Access Publication Date: 16 February Research Article

Chemical Screening in an Estrogen Receptor Transactivation Assay With Metabolic Competence

Kristen Hopperstad, Danica E. DeGroot,² Todd Zurlinden, Cassandra Brinkman, Russell S. Thomas, and Chad Deisenroth¹

Study Highlights

- **Chemical Screening**: Screened 768 chemicals from the ToxCast library for Estrogen Receptor transactivation and viability.
- Hazard Identification and Prioritization: Identify and rank-order chemicals that are estrogenic and exhibit metabolism-dependent changes in bioactivity.
- In Silico Prediction and Profiling: Profile the common mechanistic routes of biotransformation and the identify of putative metabolites associated with the observed estrogenic effects.

Profiling Predicted Metabolites and Common Mechanisms of Biotransformation

CASRN	Name	Classification	Metab Routes	Metab Global Accumulation	Metab Likelihood	Met_Neg Hitc	Met_Pos Hitc	Biotransformation	Metabolic Shift
94-26-8	Butylparaben	Parent	NA	NA	NA	1	0	inactivated	-167.3818927
99-96-7	4-Hydroxybenzoic acid	Metabolite	EsterHydrolysis	0.4988	LIKELY	1	0	inactivated	-167.3818927
71-36-3	1-Butanol	Metabolite	EsterHydrolysis	0.4256	LIKELY	1	0	inactivated	-167.3818927
1219-38-1	Octylparaben	Parent	NA	NA	NA	1	0	inactivated	-99.32932278
99-96-7	4-Hydroxybenzoic acid	Metabolite	EsterHydrolysis	0.4987	LIKELY	1	0	inactivated	-99.32932278
111-87-5	1-Octanol	Metabolite	EsterHydrolysis	0.4255	LIKELY	1	0	inactivated	-99.32932278
85-68-7	Benzyl butyl phthalate	Parent	NA	NA	NA	1	0	inactivated	-74.98383135
88-99-3	Phthalic acid	Metabolite	EsterHydrolysis	0.2469	LIKELY	1	0	inactivated	-74.98383135
100-51-6	Benzyl alcohol	Metabolite	EsterHydrolysis	0.3104	LIKELY	1	0	inactivated	-74.98383135
71-36-3	1-Butanol	Metabolite	EsterHydrolysis	0.3177	LIKELY	1	0	inactivated	-74.98383135
118-58-1	Benzyl salicylate	Parent	NA	NA	NA	1	1	inactivated	-43.94470165
69-72-7	Salicylic acid	Metabolite	EsterHydrolysis	0.4944	LIKELY	1	1	inactivated	-43.94470165
100-51-6	Benzyl alcohol	Metabolite	EsterHydrolysis	0.4135	LIKELY	1	1	inactivated	-43.94470165
103-41-3	Benzyl cinnamate	Parent	NA	NA	NA	1	0	inactivated	-39.07342352
621-82-9	Cinnamic acid	Metabolite	EsterHydrolysis	0.4789	LIKELY	1	0	inactivated	-39.07342352
100-51-6	Benzyl alcohol	Metabolite	EsterHydrolysis	0.4092	LIKELY	1	0	inactivated	-39.07342352
121-79-9	Propyl gallate	Parent	NA	NA	NA	1	1	inactivated	-24.05419192
149-91-7	Gallic acid	Metabolite	EsterHydrolysis	0.4989	LIKELY	1	1	inactivated	-24.05419192
71-23-8	1-Propanol	Metabolite	EsterHydrolysis	0.4259	LIKELY	1	1	inactivated	-24.05419192
118-55-8	Phenyl salicylate	Parent	NA	NA	NA	1	0	inactivated	-23.42557027
69-72-7	Salicylic acid	Metabolite	EsterHydrolysis	0.4997	LIKELY	1	0	inactivated	-23.42557027
108-95-2	Phenol	Metabolite	EsterHydrolysis	0.4997	LIKELY	1	0	inactivated	-23.42557027
81406-37-3	Fluroxypyr-meptyl	Parent	NA	NA	NA	1	0	inactivated	-18.89353032
69377-81-7	Fluroxypyr	Metabolite	EsterHydrolysis	0.457	LIKELY	1	0	inactivated	-18.89353032
123-96-6	2-Octanol	Metabolite	EsterHydrolysis	0.4848	LIKELY	1	0	inactivated	-18.89353032
L									
Ŷ		Ŷ	Ŷ				Ŷ		
			Route of Transformation	Accumul and Prob	ability		Me	<i>In Vitro</i> etabolism Data	
				Classific	ation				1

Development of a Bioprinting Approach to Adapt the AIME Method for Highthroughput Screening Applications

• Goal: Adapt AIME method to an automated approach using bioprinting for routine application to high-throughput screening.

• The bioprinter method expands the functional capacity for hepatic phase I (CYPs) and phase II (UGTs, SULTs, GSTs) metabolic enzymes.

Acknowledgements

Kristen Hopperstad Danica DeGroot Todd Zurlinden Andrew Eicher John Gamble Briana Foley James McCord Cassandra Brinkman Woody Setzer Katie Paul-Friedman Madison Feshuk Steve Simmons Rusty Thomas

Paul Carmichael Mi-Young Lee

Contact

deisenroth.chad@epa.gov

