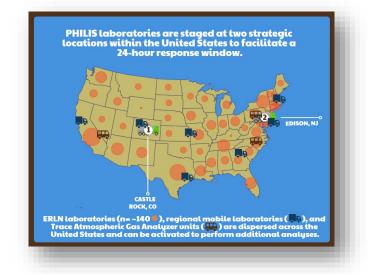


The Use of Non-Targeted Analysis for Rapid and Emergency Response: Demonstration Through Mock Scenarios

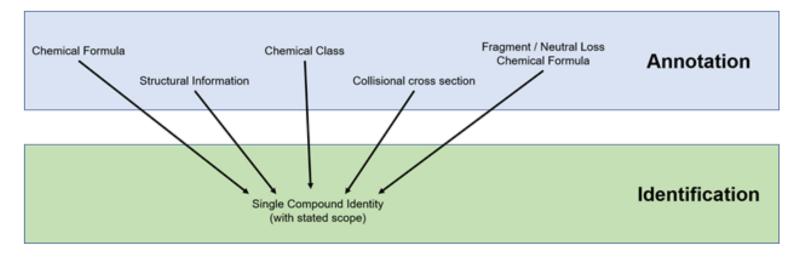

John T. Sloop, Alex Chao, Jennifer Gundersen, Allison L. Phillips, Jon R. Sobus, Elin M. Ulrich, Antony J. Williams, Seth R. Newton

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency (USEPA)

Chemical releases into the environment

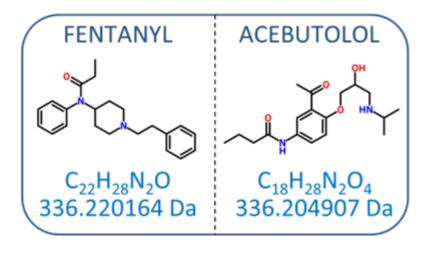
- In 2021, over 25,000 calls logged by the National Response Center (NRC) reporting environmental discharges
- 30% of an unknown composition
 - Of those of an unknown composition, over 70% reported to penetrate a body of water near the release
- Targeted approach for an unknown chemical is akin to "a shot in the dark"
 - Clear need for systematic approach to elucidating identity of unknown chemicals → NTA!

vironmental Protection


What is "NTA"?

- Non-targeted analysis
- Mass spectrometry techniques for characterizing the chemical composition of a given sample without the use of *a priori* knowledge regarding the sample's chemical content
 - LC-MS, GC-MS (high resolution mass spectrometry, HRMS)
- No prior knowledge of sample's chemical content → no use of chemical standards
 - How is identity determined?

"Features" in NTA data


- Molecular feature extracted from data collected during NTA studies
 - Defined by an exact mass at a retention time, associated ions, and intensity of an apparent unknown compound
- Feature annotation vs. feature identification

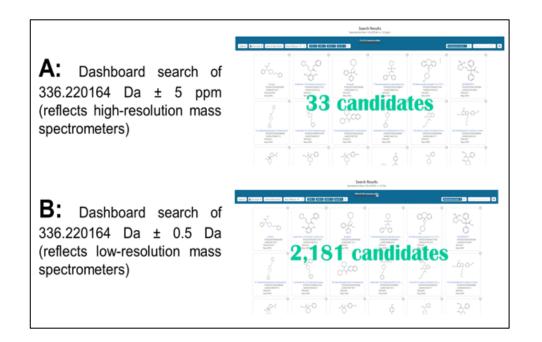
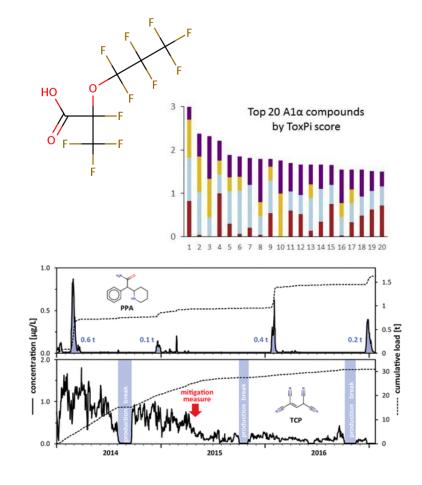


Figure from: https://nontargetedanalysis.org/reference-content/methods/data-processing-and-analysis/#annotation-and-id

Importance of HRMS


Need instrument with resolving power >> 20,000 to distinguish between the two compounds; not plausible without high-resolution instrumentation

NTA for Identification of Unknowns

 Identification of novel PFECAs and PFESAs in Cape Fear River Basin (GenX)

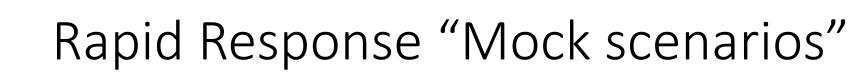
ntal Protection

- Identifying high-priority compounds found in drinking water across central NC
- Identifying previously undetected compounds in the Rhine River after major spill events
- Daily screening of potable water sources for detection of potential spills

NTA in Rapid Response

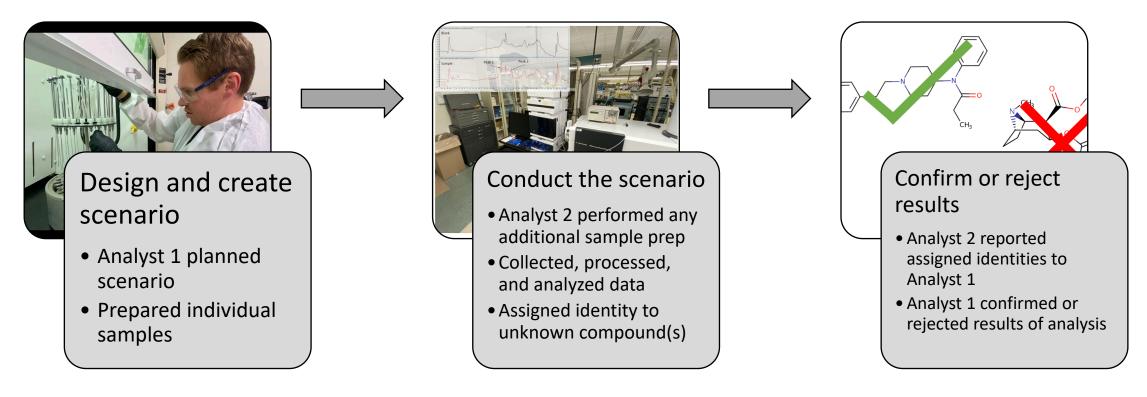
- Phillips et al. (2021); laid the framework of how NTA could be applied in the field of rapid response
 - High-resolution mass spectrometry (HRMS) vs. traditional, low-resolution instrumentation
 - NTA has been proven as a tool for identifying unknowns
- Logical step after the framework paper was a demonstration

Environmental Toxicology and Chemistry


critical perspectives 🛛 🔂 Full Access

A Framework for Utilizing High Resolution Mass Spectrometry and Non-Targeted Analysis (NTA) in Rapid Response and Emergency Situations

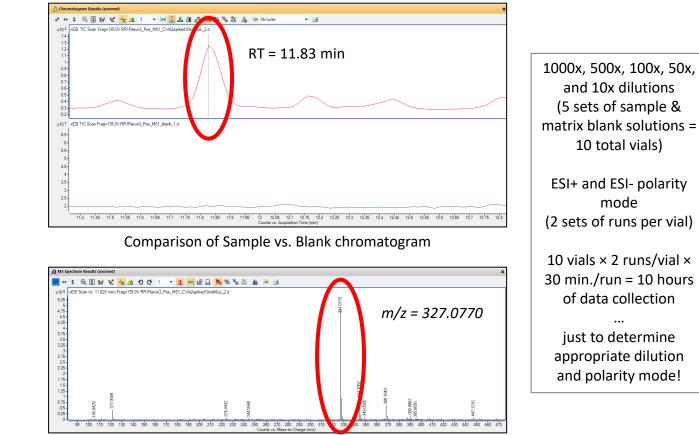
Allison L. Phillips, Antony J. Williams, Jon R. Sobus, Elin M. Ulrich, Jennifer Gundersen, Christina Langlois-Miller, Seth R. Newton 🗙


First published: 20 August 2021 | https://doi.org/10.1002/etc.5196

(Submitted 28 June 2021; Returned for Revision 26 July 2021; Accepted 17 August 2021) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/etc.5196

vironmental Protection

 Created samples intended to mimic situations in which a rapid response would be necessary – two analysts for each scenario

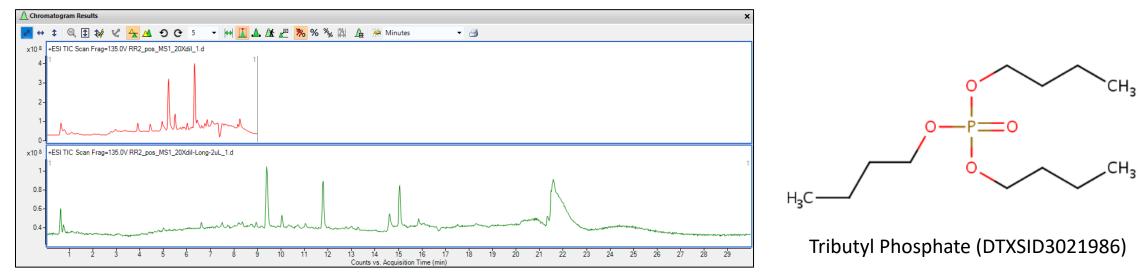


Method Development via "Mock" mock scenarios

"Mock" mock scenario 1

- Top priority: not contaminating the instrument/saturating the detector
- LC-MS operating in ESI+ and ESI- polarity mode
 - ~ 30 min. run-time
- Sat around all day waiting for dilutions to finish
- Eventually, correct identification: triphenyl phosphate

MS spectrum of sample chromatogram at RT 11.829 min

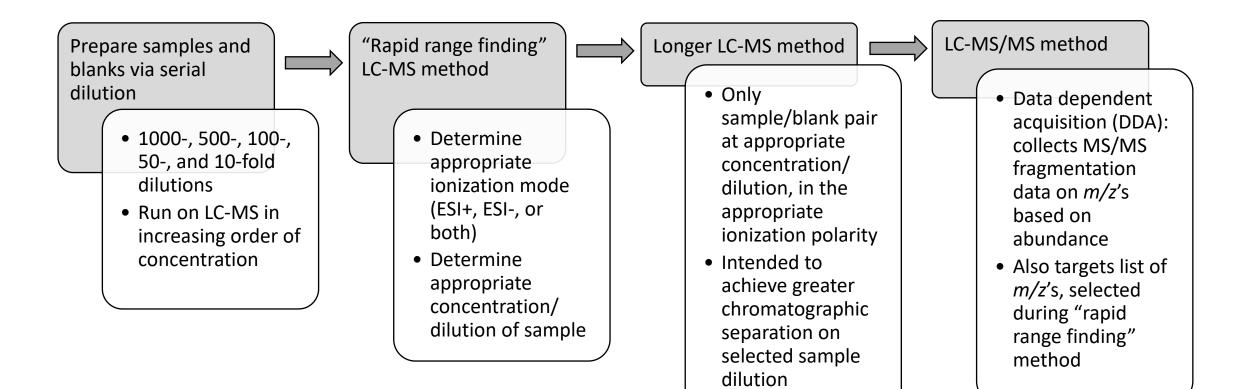

Important takeaway: Need better method for range finding!

Method Development via "Mock" mock scenarios

- Goals of "2nd" mock scenario:
 - Test a rapid range-finding method
 - Start to determine appropriate workflows for MS and MS/MS data

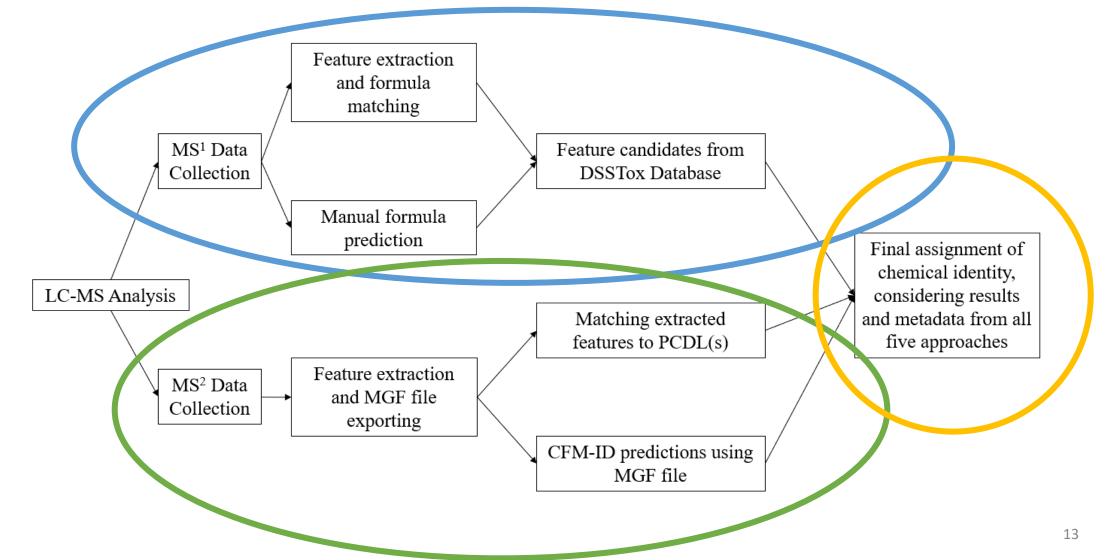
- "Rapid range-finding method"; 9-minute LC-MS method
 - Determine appropriate concentration/dilution factor
 - Determine appropriate polarity (ESI+ or ESI-)
- Tributyl Phosphate

"Short" vs. "Long" LC-MS method sample chromatograms



Method Development Conclusions

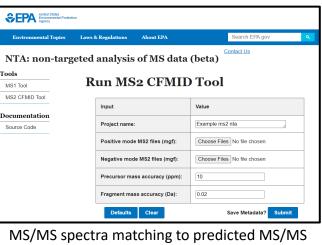
- In conclusion, after finishing "method development", we found three areas we should focus on:
 - Data Collection Workflow
 - Data Processing Workflow
 - Metrics for Success



Data collection workflow

Data processing workflow

Data processing workflow


Project Navigator Ø	Experie	ent Name									Workflow		Q.
Project_Name :	<	-				 1				 	1		^
Experiments	Compou.	JTS0805			Formula	Ionizatio	Mass		Retentio	Compou	Experiment	nt Setup	*
Experiment_Name	260.192		44676084			2 Esi+	260.1929		6.649	FindByMo	 Experim 	ent Grouping	
	218.103		43461924			Esi+	218 1031		8.392	FindByMo	Create 1	nterpretation	
Experiment Name -1+1x	325.160		20871834			Esi+	325.1608		13.334	Find8yMo			
Compension in anne			17424744			Esi+	183.9778		21.512	FindByMo	Quality Cr	and and	*
Interpretations	408.155		13195336			2 Esi+	408.1552		9.434	FindByMo	deanth cu	41104	~
Analyzia	246.157		11269487			Esi+	246.1577		7.528	FindBy#to			
All Entities	268.139	10307638				Esi+	268.1397		7.529	FindByMo	Analysis		*
C) My Payorites	166.005	6908511				2 Esi+	166.0059		21.657	FindByMo			
- Hy ravenes	156.997	7634266	8727315			2 Esi+	156.9972		0.626	FindByMo	Class Pres	iction	8
	330.036	1	7416969			Esi+	330.0364		10.991	FindBy410			
	514.298		6158346			2 Esi+	514.2989		7.528	FindByMo	The second second	terpretations	
	352.018	1				Esi+	352.0188		10.993	FindByMo			×
		2585043				Esi+	519.4291		20.317	FindByMo	Find Similar Entity Lists Export for Recursion IDBrowser Identification		
	171.11@	6554816				Esi+	171.1100		6.649	FindByMo FindByMo			
		5976257				Esi+	123.0795		21.50/				
	424.129.		5445514			2 Esi+	424.1295		9.434	FindByMo	Eurova 6		· · ·
Global Items 0	249 958	1827425				Esi+	172.0712		21.657	FindByMo FindByMo	Legend	Export fo	or identific
							249.9581				Legend		v
8 🛄 My Lists	249.170	4885969				Esi+	249.1705		8.678	FindByMo	Legend	 Spreadsheet (Raw)
My Reports	403.199	2972270				ESI+	403 1998		9.454	FindByMo			
	216.097	1110513	4656478			E E31+ 2 E41+	347.0633		1 184	FindByMo FindByMo			
	142 034	3703354				ESI+	142.0348		0.626	FindByMo			
	278.152	3430170				Esi+	278.1521		13.042	FindByMo			
	220.027	3308028				Esi+	220.0276		21,532	FindByMo			
	312.136	3227929				Esi+	312.1365		12.808	FindByMo			
	312.136	3227929				ESI+	312.1365		7.529	FindByMo			
	273.267	2708925				Esi+	273.2670		8.321	FindByMo.			
	217.951		2878732			ESI+	217.9516		0.521	FindByMo			
	225 005		2625573			Frie	225.0050		21.512	FindB Mo			
	316.020	2728433				Esi+	316.0205		4 803	FindByMo			
	284 114	2702247				Fu+	284.1140		7.530	FindBMo			
	436.186		2566943			Esi+	436.1868		10.346	FindByMo			
	367 990	1952915				Esi+	367.9902		10.992	FindB/Mo			
	101 008		2442969			Esi+	101.0087		0.626		v		
						 12314	101.008/	1102.04	9.929	 Pailog Wild	-		
	Profile (slot (Log2 Norm	alzed) III 5	preadsheet (U	aw) X								
Rows 975: 0 selected, Columns												114M of 1	11 MS

Profinder and MPP

	Generate Forr			
Method Automation A	Allowed Species	Limits Charge S	tate Fragment For	nulas
Chromatograms	Charge carrier to b Positive ions:	e assumed if not kno		
Spectra	-electron		egative ions: +electron	A
- Identification	₩ +H		⊠-H □+CI	
Identification Workflow	+K	_	+Br	
Database Search Settings	+C2H5		+CH3C00	
Library Search Settings	1 +C3H5	¥		
Generate Formulas 🛛 🔺		+ 🗙		• ×
Generate Formulas 🔺 🛕	MS ion electron st		h even and odd	· ×
Generate Formulas 🔺 🔺		allow bot		···· ·
Generate Formulas 🔺	Group hits with	ate: allow bot		riers)
enerate Formulas 🔺	Group hits with Bements and limits	ate: allow bot	different charge car	
nerate Formulas 🔺	Group hits with Bements and limits Element	ate: allow bot h same formula (but s Minimum	different charge car Maximum	riers)
A Pormulas	Group hits with Elements and limits Element C	allow bot h same formula (but s Minimum 3	different charge car Maximum 30	
enerate Formulas 🔺	Group hits with Elements and limits Element C H	ate: allow bot h same formula (but s Minimum 3 0	different charge car Maximum 30 60	A
enerate Formulas 🔺	Group hits with Elements and limits Element C H O	ate: allow bot h same formula (but s Minimum 3 0 0 0	different charge car Maximum 30 60 10	
enerate Formulas 🔺	Group hits with Bements and limits Element C H O N	ate: allow bot h same formula (but s Minimum 3 0	Maximum 30 60 10 10	A
enerate Formulas 🔺	Group hits with Elements and limits Element C H O	ate: allow bot h same formula (but s Minimum 3 0 0 0	different charge car Maximum 30 60 10	A
enerate Formulas 🔺	Group hits with Bements and limits Element C H O N	ate: allow bot h same formula (but s Minimum 3 0 0 0	Maximum 30 60 10 10	A

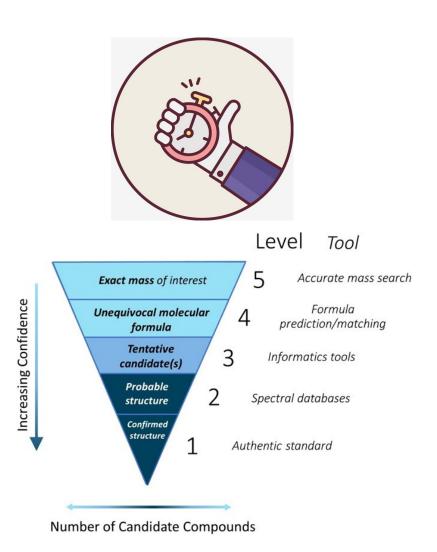
United States Environmental Protect	zion								
Environmental Topics	Laws & Regulations About EPA	Search EPA.gov Q							
NTA: non-targeted analysis of MS data (beta)									
Tools MS1 Tool	Run NTA MS1 Too	ol							
Run MS1 Tool MS1 Tool Algorithms	Input	Value							
MS1 Tool QA/QC MS1 Tool References	Project name:	Example nta							
MS2 CFMID Tool	Run test files only (debugging):	no v							
Generatir	ng candidate lists via V	VebApp MS1 Tool							

Method Editor: Database Search Setting 🔊 🔹 🐑 🔹 Search Library / DB for All Compounds 🔹 🟠 🌽 🖬 🌃 Search Criteria Peak Limits 🛕 Positive Ions 🛕 Negative Ions Search Results Charge carriers Neutral losses Chrom Target/Su Sample Purit Compound + 🗙 + × Identificatio Charge states, if not know Aggregate entification Workflow e.g., [2M+H]+ Dimers Charge state range 1-2 tabase Search Sett Trimers e.g., [3M+H]+ brary Search Setting DB ion type search mod enerate Formulas Neutrals Cations (this type is not applicable to CSV databases

MS/MS spectra matching to predicted MS/MS spectra via WebApp MS2 Tool

Final assignment of chemical identity, considering results and metadata from all 5 approaches

Molecular formula generation via Qual



1. Speed of analysis

nvironmental Protection

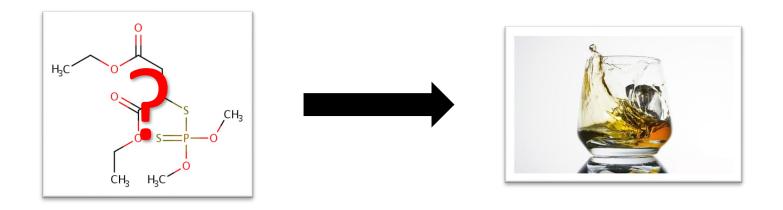
Agency

- 2. Confidence in the eventual chemical identifications
- 3. Degree of hazard assessment that can be performed
- 4. Transferability of the designed NTA method/workflow

Hazard Comparison Module (HCM)

 Proof-of-concept, web-based implementation of original work of Vegosen and Martin

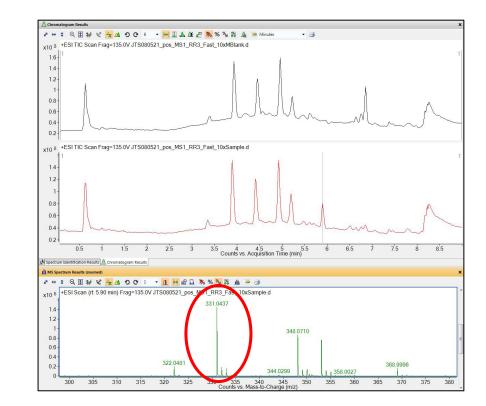
Environmental Protection


Agency

- Chemicals searched by CAS RNs, chemical names, DTXSIDs, SMILES
- Hazard information converted into scores of low, medium, high, or very high (L, M, H, VH)

eminformatics Modules sion: DEV, build: 2022-05-04 16:47:03 UTC			(🖗 HAZARE	0 🚯 AL	.erts 🔒 pred	ICT 1.0 🖩 PREDICT 2	.0 😴	SEARCH Hazard asses	STAN	DARDIZE	TOX	PRINTS	:
↑								(Emergency Full	Response	• V	3		Ō
Chemicals: 32			Toxicity: \	/H - Very High	H - High M	- Medium L - Low I - In	conclusive N/A - Not Applicable	Author	Custom		QSAR Model)		
						Human Health Ef	fects		Emergency Site-Specific		Ecotoxicity	8		
Skipped (0) Unlikely (0) Filters (0) Sorting (0) Structure CAS Name		Acute	Mammalian T Iuhalation	Dermal	Genotoxicity Mutagenicity	Neurotoxicity ensodx albus S	Systemic Toxicity ansodx a ab	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity			
139-40-2 2,4-Bis(isopropyl	IGBTM 1.00	М	М	L	L	1	1	1	М	н	VH			
1912-24-9 Atrazine	AIGBT	м	н	L	L	М		н	L	м	VH			
5915-41-3 Terbutylazine	GВТМ 0.94	м	1	L	VH			н	н		νн			
122-34-9 Simazine	IGBTM 0.91	м	н	L	L		М	T	н	н	νн			
6190-65-4 Deethylatrazine	GBTM 1.00	М	1	1	L	1	I	1	1	I	н			
1007-28-9 Deisopropylatrazine	GВТМ 0.91	М			L						М			

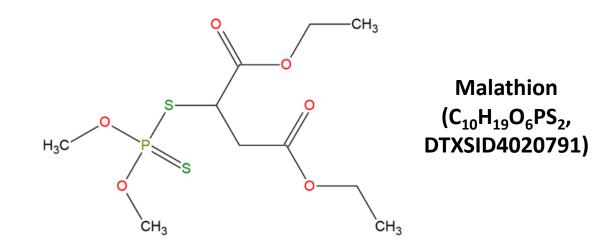
Mock scenario 1: Nerve agent spiked into beverage



- Scenario: chemical warfare agent (CWA) spiked into alcoholic beverage, intended to poison an individual
- Surrogate of chemical warfare agent, similar to Novichok nerve agents, spiked into pure ethanol by Analyst 1
- Analyst 2 proceeded with data collection workflow

Mock scenario 1: Results

- Formula matching to MS-Ready formula
 - C₁₀H₁₉O₆PS₂, scored 89.2
- Formula prediction using Molecular formula generator (MFG) tool
 - Top hit = $C_{10}H_{19}O_6PS_2$, score of 99.11
- NTA WebApp MS1 tool
 - N=250, Malathion $(C_{10}H_{19}O_6PS_2)$
 - N=33, Isomalathion $(C_{10}H_{19}O_6PS_2)$
 - N=17, Becampanel $(C_{10}H_{11}N_4O_7P)$
- MS/MS matching to PCDLs
 - No good matches (very low scores)
- NTA WebApp MS2 tool
 - Multiple potential matches, malathion one of them (low scoring)


"Rapid range finding" chromatogram and MS spectrum of 10x dilution at RT = 5.90 min; m/z of interest is 331.0437

Mock scenario 1: Metrics for Success

1. Speed of analysis

vironmental Protection

- 13 "active" hours
- 2. Confidence in identification
 - Level 2 (structural assignment)
- 3. Hazard assessment provided
- 4. Transferability of the approach
 - N/A

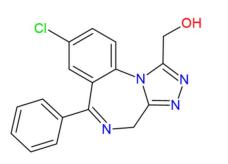
						Human Health Effe	ects				Ecotoxicity
Skipped (0)		Acute	Mammalian T	oxicity	enicit	Neurotoxicity	Systemic Toxicity				A‡
Unlikely (2) Filters (0) Sorting (0) Structure CAS Name		Oral	Inhalation	Dermal	Genotoxicity Mutage	Single Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity
121-75-5 Malathion		н	VH	L	н	н		н	м	н	VH
64-17-5 Ethanol LI	GBT	VH	VH	L	L		М	I	L	н	м

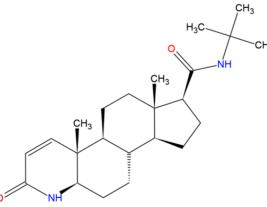
Mock scenario 2: Raid on "drug house"

- Scenario: drug house raided under suspicion of fentanyl processing with another illicit drug
 - Some illicit drug being "cut" with fentanyl or fentanyl-analog
- Two surrogates (of illicit drug and Fentanyl) spiked onto:
 - Dusty area of benchtop in lab (surface wipe, "traditional sampling")
 - Carpet sample (extraction of porous material, "non-traditional sampling")

ntal Protection

Mock scenario 2: Results


- Existence of multiple peaks made it unrealistic to choose individual peaks of interest by visual inspection alone
 - Sort by abundance after blank subtraction following data collection
- Feature 1 (C₁₇H₁₃ClN₄O at 324.0783 Da):
 - MS-Ready formula and MFG formula agreed with top hit from WebApp MS1 tool: α -hydroxy alprazolam
 - Using WebApp MS2 tool, α -hydroxy alprazolam ranked 2nd highest
- Feature 2 (C₂₃H₃₆N₂O₂ at 372.2718 Da):
 - MS-Ready formula and MFG formula agreed with top hit from WebApp MS1 tool: finasteride
 - MS/MS match via PCDLs for finasteride


Mock scenario 2: Metrics for Success

1. Speed of analysis

vironmental Protection

- 30 "active" hours
- 2. Confidence in identifications
 - Level 2 (structural assignments)
- 3. Hazard assessment provided
- 4. Transferability of the approach
 - Different individual (familiar with NTA, but not with specifics of the workflows prior to this scenario) assumed role of "Analyst 2"

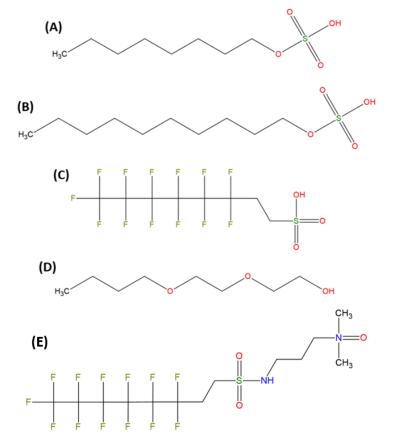
 α -hydroxy alprazolam

Finasteride

Chemicals: 9 Toxicity: VH - Very High H - High M - Medium L - Low I - Inconclusive N/A - Not Applicable Authority: Authoritative O Screening O									g 🛈 QSAR Model		
						Human Health Eff	fects				Ecotoxicity
Skipped (0)		Acute	Mammalian 1	Toxicity	enicity	Neurotoxicity	Systemic Toxicity				2ţ
Unlikely (6) Filters (0) Sorting (0) Structure CAS Name		Oral	Inhalation	Demal	Genotoxicity Mutagenicity	Single Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity
37115-43-8 alpha-Hydroxyalp		М			L						VH
No CAS No Name	LIKELY	М			L						н
No CAS No Name	LIKELY	М			L						н
98319-26-7 Finasteride		м			L						м
75-64-9 tert-Butylamine	GBT	VH	н	L	L	I.	I	I.	VH	н	м
No CAS No Name	LIKELY	L			L						Н

Mock scenario 3: Industrial spill into surface water

- Scenario: industrial chemical mix (aqueous film forming foam, AFFF) spilled into river/lake
- Commercially available AFFF mixture (Solberg Type 6) spiked into surface water sample
- Selected a total of 14 features for further investigation, multiple features assigned a structure


Mock scenario 3: Results (Structural identifications)

• 6 features \rightarrow 5 structural assignments

Environmental Protection

Agency

- Chemical (E) present in both ESI+/ESI- data
- For each of these chemicals, molecular formula, WebApp MS1 tool, and one of the MS/MS approaches agreed on identity
- Reported identifications in 68 hours, structure assignments confirmed via literature review

(A) Octyl hydrogen sulfate; (B) Decyl hydrogen sulfate;
(C) 6:2 fluorotelomer sulfonic acid; (D) 2-(2-Butoxyethoxy)ethanol;
(E) N,N-Dimethyl-3-((perfluorohexyl)ethylsulfonyl) aminopropanamine N-oxide

Mock scenario 3: Results (All other assignments)

Feature ID	Polarity (ESI+/ESI-)	Measured accurate mass (Da)	RT (min)	Final Identification Level
7	ESI+	208.9575	8.449	Level 4 (C ₅ H ₅ Cl ₂ N ₃ S)
8	ESI+	162.9899	6.275	Level 4 (C ₄ H ₃ ClN ₂ O ₃)
9	ESI+	99.9837	6.325	Level 5
10	ESI+	184.1077	6.255	Level 5
11	ESI-	135.9952	6.256	Level 5
12	ESI-	257.9545	6.320	Level 5
13	ESI-	307.9910	8.447	Level 5
14	ESI-	335.9635	8.447	Level 5

Mock scenario 3: Metrics for Success

1. Speed of analysis

ntal Protectior

- 68 "active" hours
- 2. Confidence in identifications
 - Structures assigned for 5 chemicals, confirmed postanalysis
- 3. Hazard assessment provided
- 4. Transferability of the approach
 - N/A; same Analyst 2 as scenario 1

Chemicals: 5		Toxicity:	VH - Very High	H - High M	- Medium L - Low I - In	conclusive N/A - Not Applicable	e Authority: A	uthoritative	U Screening	g 🕛 QSAR Model
					Human Health Eff	fects				Ecotoxicity
Skipped (0)	Acute	e Mammalian	Toxicity	enicit	Neurotoxicity	Systemic Toxicity				Ę1
Unlikely (8) Filters (0) Sorting (0) Structure CAS Name	Oral	Inhalation	Dermal	Genotoxicity Mutagenicit.	Single Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity
110-11-2 Octyl hydrogen s…	М			VH				Н		М
142-98-3 Decyl hydrogen s…	М			н				н		н
112-34-5 GB 2-(2-Butoxyethox	M	1	L	L			1	М	н	L
80475-32-7 G N,N-Dimethyl-3-((BT /			1						1
29765-95-5 3,3,4,4,5,5,6,6,7, LIKE	м			T						L

Metrics for Success for All scenarios

1. Speed of analysis

ental Protection

- All chemical assignments provided to Analyst 1 within 72-hour window
- 2. Confidence in the eventual chemical identifications
 - Majority of chemicals were assigned a structure; all structure assignments were confirmed post-analysis
- 3. Degree of hazard assessment that can be performed
 - Utilized the Hazard Comparison Module to aggregate relevant measured and predicted toxicity values for chemicals assigned a structure
- 4. Transferability of the designed NTA method/workflow
 - Different individual assumed the role of "Analyst 2" for mock scenario 2 than the other scenarios; method and workflow could ultimately be transferred to regional, state, and other labs with minimal training to incorporate NTA

Current Limitations and Future Work

• Current limitations/Future work:

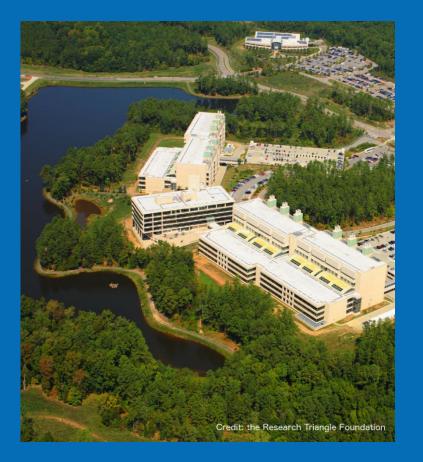
ntal Protectior

- All scenarios included "known" chemicals

 → continue to improve workflows for
 narrowing down lists of tentative
 candidates
- Qualitative, not quantitative → incorporating quantitative NTA approaches for concentration estimates, improving hazard assessment
- Only used LC-MS → Exploring GC-MS NTA methods for rapid response scenarios

	Medium/High Concentration	Trace Concentration
Known Chemical	Easy - chemicals of interest can be identified using rapid range finding	Easy - if information about chemical(s) of interest are available (e.g., the masses of the compounds)
Undocumented Chemical	Medium Difficulty - focus can be placed on selected features; correct identification is not guaranteed	Difficult – situational information is needed; chances of identification are lower

"Known Unknowns" vs. "Unknown Unknowns"



Conclusions

- Situations where traditional, targeted methods cannot elucidate the identity of an unknown → NTA is a useful, additional analytical tool
- The three mock scenarios presented showcase the applicability of NTA approaches
- The success of each mock scenario against the identified metrics for success was discussed
 - Level of success increases as complexity of specific scenario decreases

Acknowledgements

- EPA ORD and Oak Ridge Institute for Science and Education (ORISE)
- The NTA WebApp team
- The HCD team
- Jarod Grossman of Agilent

Contact Information: Sloop.John@epa.gov