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* The views expressed are those of Dr. Chris Corton
and do not reflect US-EPA policy or product
endorsement by the US-EPA.
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SEPA Outline of Objectives
* How high-throughput transcript profiling is carried out as a method to
comprehensively assess the effects of chemicals on biological systems
* Different platforms for assessing genome scale gene expression changes

e High-throughput transcript profiling (HTTr)

 How to identify the molecular targets of chemicals
* Hypothesis generating tools
* Gene expression biomarkers
* How to
* |dentify predictive gene sets
* Characterize the gene sets
* Determine predictive accuracy
e Use in screening chemicals

=, * How to link the alterations in molecular targets to potential adverse events.
H ¢ Use of the adverse outcome framework
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Gene Expression Comparison (Differentially Expressed Genes)

* List of statistically-filtered genes derived from a comparison
between treated and control groups

Gene Expression Biomarker

* List of genes and associated fold-change values or ranks

 Measures a molecular initiating event or key event in an
adverse outcome pathway using transcript profiling

Adverse Outcome Pathway

» Structured representation of biological events leading to
adverse effects; relevant to risk assessment

* A series of causally connected key events (KE) between
two points — a molecular initiating event (MIE) and an
adverse outcome (AO) that occur at a level of biological
organization relevant to risk assessment
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ToxCast assays cover many genes and pathways, but do not provide
complete coverage of biological space.

Gene Coverage Pathway Coverage*

n =320 genes \’

Il ToxCast
m Not in

ToxCast

“At least one gene from
pathway represented

USEPA Strategic Vision and Operational Roadmap:

Tier 1 strategy must cast the broadest net possible for capturing
hazards associated with chemical exposure.

Global gene expression provides a robust and comprehensive
evaluation of chemically induced changes in biological processes.

Increasing efficiency and declining cost of generating whole
transcriptome profiles has made high-throughput transcriptomics
(HTTr) a practical option for determining bioactivity thresholds in in
vitro models.

High throughput toxicity testing

A strategic vision and operational road map for computational toxicology at
the U.S. Environmental Protection Agency

/
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Organ-level Effect without AOP

Joshua Harrill, EPA



€EPA  Evolution of gene expression profiling

Key Driver —
lower costs of
‘ profiling

1992: Differential display; Liang and Pardee Science. 257(5072):967-71
1995: Two-color microarrays; Schena et al. Science. 270(5235):467-70
Late 1990s: Agilent and Affymetrix arrays — full genome analysis

2010s: RNA-Seq
* Not amenable to high-throughput

2017: PLATE-Seq Bush et al. Nat Commun. 8(1):105

* 96 samples processed simultaneously; uses cell lysates and oligo(dT)-coated plates; 2M reads/sample;
~S515/sample

2017: Tempo-Seq; BioSpyder; Yeakley et al. PLoS One. 12(5):e0178302

» 384 samples processed simultaneously; uses cell lysates; full-genome and 1500+ platforms

2018: DRUG-Seq; Ye et al. Nat Commun. 9(1):4307

* 384 samples processed simultaneously; uses cell lysates; 2M reads/sample; ~S2-4/sample
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BioSpyder TempO-Seq

Targeted RNA-Seq technology

Whole transcriptome assay provides output
on > 20,000 transcripts.

Requires very low input (< 10 pg total RNA).

Performed on “standard” PCR and Next Gen
Sequencers.

Compatible with purified RNA or cell lysates.

TempO|Seq
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(purified or cell lysate) . i (An
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SEPA  Using gene expression biomarkers to identify molecular
targets of chemicals in transcriptomic studies

[

Gene
Lists ﬂ
In vitro B -
screening Q Concentratlon-response
EPA MCF-7 Screen  ———— [ ¥L ID Chemical targets Tier 2 HT
~2200 Chemlcals chemicals Cell Line 1 m S— . > S
8 doses <l » a » O p Chemical creen
6 hours =| 9= CEJ- E Prioritization Validation
I‘\%_. __.//J GJ 09
Cell Line ... I_ = m
~20K -
Genes

* Use predictions for
e Chemical prioritization as part of Tier 1 screening
=R * Followed up with short-term tests in organotypic cultures or animals




SEPA Strategies for identifying molecular targets of chemicals

in gene expression profiles: Pathways vs. Biomarkers

e Biomarker defined as “a characteristic that Pathways/
is objectively measured and evaluated as

an indicator of normal biological processes, Slgnatu res

pathogenic processes, or pharmacologic

responses to a therapeutic intervention.” ngh Level of COverage Low
(1998, the National Institutes of Health Low Effort to construct/use High
Biomarkers Definitions Working Group) Unknown Specificity/Sensitivity High
* Very few examples of well hesi Out finiti
characterized gene expression Hypothesis utcome Definitive
biomarkers Generator
* No examples of gene expression
biomarkers accepted by regulatory
- age”/‘?ies for toxicity t:jsting | * A gene expression biomarker is a short list of
* Pathways/signatures are often used to .
mterpreyt geﬁe expression genes and associated fold-change values that are
* Gene Set Enrichment Analysis (GSEA) used to predict the activity of a factor important in
" Ingenuity Pathway analysis (IPA) mediating effects of chemicals

* Pathways/signatures and biomarkers are
complimentary approaches
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Biomarkers that predict key events in human cells in vitro

Endocrine disruption

Ryan et al. (2016). Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker
Accurately Predicts Estrogen Receptor a Modulation in a Microarray Compendium. Toxicol Sci. 151(1):88-103.

Androgen receptor: Rooney et al. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray
Compendium. Toxicol Sci. 166:146-162.

DNA Damage Response

Corton et al. (2018). Using a gene expression biomarker to identify DNA damage-inducing agents in microarray profiles. Environ Mol Mutagen.
59:772-784.

Cho et al. (2019). Assessment of the performance of the TGx-DDI biomarker to detect DNA damage-inducing agents using quantitative RT-PCR
in TK6 cells. Environ Mol Mutagen. 60:122-133.

Corton JC, Witt KL, Yauk CL. (2019). Identification of p53 Activators in a Human Microarray Compendium. Chem Res Toxicol. 32(9):1748-1759.

Epigenetic effects

Corton et al. A Gene Expression Biomarker Identifies Inhibitors of Two Classes of Epigenome Effectors in a Human Microarray Compendium.
Submitted.

Stress factors

Cervantes PW, Corton JC. (2021). A Gene Expression Biomarker Predicts Heat Shock Factor 1 Activation in a Gene Expression Compendium.
Chem Res Toxicol. 2021 34(7):1721-1737.

Jackson AC, Liu J, Vallanat B, Jones C, Nelms MD, Patlewicz G, Corton JC. (2020). Identification of novel activators of the metal responsive
transcription factor (MTF-1) using a gene expression biomarker in a microarray compendium. Metallomics. 12(9):1400-1415.

Korunes KL, Liu J, Huang R, Xia M, Houck KA, Corton JC. (2022). A gene expression biomarker for predictive toxicology to identify chemical
modulators of NF-kB. PLoS One. 17(2):e0261854.

Rooney JP, Chorley B, Hiemstra S, Wink S, Wang X, Bell DA, van de Water B, Corton JC. (2020). Mining a human transcriptome database for
chemical modulators of NRF2. PLoS One. 15(9):e0239367.



SEPA  Comparing gene lists in BaseSpace Correlation Engine
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BinmarkerTesting and Scr'eening
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e Utilize lllumina’s BaseSpace Correlation Engine

* Contains ~130,000 microarray comparisons of statistically
significant genes

* Valuable computational tools

* Compares all microarray comparisons to each other in a
pairwise fashion using a Running Fisher test

* For each pair-wise comparison: generates the number of
overlapping genes, correlation direction and p-value

~51,600 microarray comparisons in human database

m Chemical
B Gene
Infection

Large molecule

m Miscellaneous

® Tumor

m Various stressors
* |Includes ~1950 chemicals
* ~8600 perturbations of ~1700 genes (knockdowns,

overexpression, mutants)

* Greatly accelerated construction and analysis of biomarkers

Derived from Rooney et al. Toxicol Sci. 166:146-162



SER . Correlation analysis using the Running Fisher Test

 |dentification of factors (chemicals, hormones, diets, genes,
etc.) that “look” like your gene list

Does|this|“look like”

Does|this|“look like” the opposite of|t
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* Correlation can be determined computationally using the
Running Fisher test in BSCE
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SEPA Computing directionality and final correlation scores

between two gene lists
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Subset 2
2 ) | stz | =
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* Score(bl, b2) = sum(b1+b2+, bl+b2-, b1-b2+, b1l-b2-)
* Running Fisher Test p-value
* Direction of the correlation

* The Running Fisher test p-value is a useful metric of correlation between gene sets

Adapted from Kuperschmidt et al. (2010) PLoS One



SEPA Construction of an AR biomarker — use of gene
perturbation comparisons
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* AR activation is a key driver in androgen-dependent
prostate cancer

* Focused on developing methods for predicting AR
modulation in AR positive prostate cancer cell lines

Filters used to identify AR biomarker genes

g — Genes up- or down-regulated by 4 agonists
= ' I d
T(S —
s And
= Regulatedin an opposite manner by 4 antagonists
= . . .
SR ' ) Constitutively active AR
~ And mutants
_ Regulated by AR constitutively active mutants AR (F876L)
Q similar to AR agonists
= AR (W741C/T877A)
= And
3 ndfer AR-V7
Q
© Regulated by AR knockdown
- similar to AR antagonists AR knockdowns
L )
Average fold-change expression across agonists °

51 gene androgen receptor biomarker
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40 4
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Consistent activation or suppression across the biosets
~90% of the genes are direct targets of AR as
determined by post-hoc analysis of ChIP-Seq studies

Rooney et al. (2018) Toxicol Sci. 166:146-162



SER) . Determination of biomarker accuracy

Accuracy Determination

Comparison of biomarker to

chemical profiles with known Ranking by Correlation Accuracy
&0 —
outcomes 504 @ e Determination
BN 40-\‘\ O False Activator
T v True Negative ™ 1¥ivs
g = | = L = ———
T 32 “ + Specificity
© VS E_'— ..t%w_ i . True Suppressor 5 . .
g e —— L S k\@ e - . Pomtnfe predlt?tlee value
s 10- e — * Negative predictive value
— 2 . * Balanced accuracy
+--0-+0
Class _




SEPA  The biomarker predicts AR activation and suppression
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* 163 biosets from prostate cancer cells ig T R
treated with 98 chemicals with known . B Ffor agonists
effects on AR = Wl e

« Classification of activation or 2 S .::::z
suppression required a threshold p- E_ 0
value < 10 B -10- ~,

* For activation, the AR biomarker had a N jjﬁi ""'".\
sensitivity of 94% and a specificity of 40+ “
100%, with a balanced accuracy of 97% 7 2 - o B %0 10 140 160

* For suppression, the AR biomarker had
a sensitivity of 96% and a specificity of
100%, with a balanced accuracy of 98%

* There were few chemicals in this
analysis that were environmentally
relevant

Fold-change
— _ .

> 0 N Rooney et al., in review




SERA . Use of biomarkers in HTTr chemical screening

In silico Screening

Ranking by Correlation

Comparison of biomarker to . )
P . ) * - - Characterize Hits
uncharacterized chemicals ol :m""‘“’““““"
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Examined prototypical AR
agonists or antagonists
Consistent activation or
suppression of biomarker
responses

Expression of the
biomarker genes reflects
the biomarker activation
or suppression
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SEPA  Using gene expression biomarkers to identify molecular
targets of chemicals in transcriptomic studies

Biomarkers

1,2,3,....
.

tes
Environmental Protection
Agency

1000’s of
chemicals

In vitro
screening

Cell Line 1

Cell Line 2

Cell Line ....

v
TempO|Seqg
v

Use predictions for
 Chemical prioritization as part of Tier O screening

T

|
A\

WII

g

1A03 40P 3,4

C
AOP 2 :in zl—)[ﬂ

Scoring

Rank

Prioritization
Additional testing
in factor-null cell

lines

* Predict molecular initiating events and key event perturbations in adverse outcome pathways
Followed up with short-term tests in knockout/knockdown cell lines, organotypic cultures or animals
Ultimate Goal: Move from hypothesis generation to final predictions to minimize further testing



e What you now know!

* Positive predictive value
* Negative predictive value
+ Balanced accuracy

* How high-throughput transcript profiling is carried out as a method o
to comprehensively assess the effects of chemicals on biological mosee — =] £ T é comemstonrepoe
systems T @l > DG E[ v vl
* Different platforms for assessing genome scale gene L)
expression changes
* High-throughput transcript profiling (HTTr) By Dtemiatn
 How to identify the molecular targets of chemicals sy

* Hypothesis generating tools

) Gene expreSSion biomarkers In silico Screening
d H OW to Comparison of biomarker to o

* |dentify predictive gene sets : - oatemin e
e Characterize the gene sets

 Determine predictive accuracy
e Use in screening chemicals

Scoring
How to link the alterations in molecular targets to potential adverse .
eve ntS . Prioritization

O Additional testing
in factor-null cell
lines

e Use of the adverse outcome framework
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Questions?

Chris Corton: corton.chris@epa.gov
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* Adverse Outcome Pathways
* Link to Wiki: https://aopwiki.org/
* General reviews of AOPs
* Carusiet al. (2018) Sci Total Environ. 628-629:1542.
Ankley and Edwards (2018) Curr Opin Toxicol. 9:1.
Leist et al. (2017) Arch Toxicol. 91:3477.
Vinken et al. (2017) Arch Toxicol 91:3697.
Ankley et al. (2010) Environ Toxicol Chem. 29:730.
* Using AOPs to help guide building predictive assays
e Coady et al. (2019) Integrated Environmental Assessment and Management 15:633.
 Wang et al. (2019) Environ Int 126:377.

* General papers and reviews on the construction and use of gene expression
biomarkers

* Lietal (2017) Proc Natl Acad Sci US A. 114:E10881-E10889.
e Corton et al. (2019) Toxicol Appl Pharmacol. 380:114683.
e Corton (2019) Current Opinion in Toxicol 18:54.

e Construction and use of rat liver gene expression biomarkers
* Rooney et al. (2018) Toxicol Appl Pharmacol. 356:99.
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Biomarkers that predict key events in human cells in vitro

Endocrine disruption

Ryan et al. (2016). Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker
Accurately Predicts Estrogen Receptor a Modulation in a Microarray Compendium. Toxicol Sci. 151(1):88-103.

Androgen receptor: Rooney et al. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray
Compendium. Toxicol Sci. 166:146-162.

DNA Damage Response

Corton et al. (2018). Using a gene expression biomarker to identify DNA damage-inducing agents in microarray profiles. Environ Mol Mutagen.
59:772-784.

Cho et al. (2019). Assessment of the performance of the TGx-DDI biomarker to detect DNA damage-inducing agents using quantitative RT-PCR
in TK6 cells. Environ Mol Mutagen. 60:122-133.

Corton JC, Witt KL, Yauk CL. (2019). Identification of p53 Activators in a Human Microarray Compendium. Chem Res Toxicol. 32(9):1748-1759.

Epigenetic effects

Corton et al. A Gene Expression Biomarker Identifies Inhibitors of Two Classes of Epigenome Effectors in a Human Microarray Compendium.
Submitted.

Stress factors

Cervantes PW, Corton JC. (2021). A Gene Expression Biomarker Predicts Heat Shock Factor 1 Activation in a Gene Expression Compendium.
Chem Res Toxicol. 2021 34(7):1721-1737.

Jackson AC, Liu J, Vallanat B, Jones C, Nelms MD, Patlewicz G, Corton JC. (2020). Identification of novel activators of the metal responsive
transcription factor (MTF-1) using a gene expression biomarker in a microarray compendium. Metallomics. 12(9):1400-1415.

Korunes KL, Liu J, Huang R, Xia M, Houck KA, Corton JC. (2022). A gene expression biomarker for predictive toxicology to identify chemical
modulators of NF-kB. PLoS One. 17(2):e0261854.

Rooney JP, Chorley B, Hiemstra S, Wink S, Wang X, Bell DA, van de Water B, Corton JC. (2020). Mining a human transcriptome database for
chemical modulators of NRF2. PLoS One. 15(9):e0239367.



SEPA  Bjomarkers that predict key events in the livers of mice
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an d rats * Oshida et al. (2015). Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-

AhR Activated Receptor a (PPARa) in a Mouse Liver Gene Expression Compendium. PLoS One.
. Estrogen 10(2):e0112655.
WW * Oshida et al. (2015). Identification of Chemical Modulators of the Constitutive Activated Receptor

(CAR) in a Mouse Liver Gene Expression Compendium. Nuclear Receptor Signaling. 13:e002.

* Oshida et al. (2015). Screening a Mouse Liver Gene Expression Compendium Identifies Effectors of
the Aryl Hydrocarbon Receptor (AhR). Toxicology. 336:99-112.

* Oshida et al. (2015). Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome
by Diverse Factors Is a Common Event. PLoS One. 11(3):e0148308.

* Oshida et al. (2015). Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of
the Liver Transcriptome. PLoS One. 2016 11(3):e0150284.

Rosen et al. (2017). PPARa-independent transcriptional targets of perfluoroalkyl acids revealed by
transcript profiling. Toxicology. 387:95-107.

* Rooney et al. (2017). Genomic Effects of Androstenedione and Sex-Specific Liver Cancer
Susceptibility in Mice. Toxicol Sci. 160(1):15-29.

* Rooney et al. (2018) Activation of Nrf2 in the liver is associated with stress resistance mediated by
suppression of the growth hormone-regulated STAT5b transcription factor. PLoS One.
13(8):e0200004.

* Rooney et al. (2018). Activation of CAR leads to activation of the oxidant-induced Nrf2. Toxicol Sci.
167:172-189.

* Rooney et al. (2018). Adverse outcome pathway-driven identification of rat liver tumorigens in
short-term assays. Toxicol Appl Pharmacol. 356:99-113.

* Corton (2019). Frequent Modulation of the Sterol Regulatory Element Binding Protein (SREBP) by
Chemical Exposure in the Livers of Rats. Comput. Toxicol. 10:113-129.
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Chemical Filters

— And/or

GeneticFilter

Regulated by AR knockdown
similar to AR antagonists

Average fold-change expression across agonists
\ J

I

51 gene androgen receptor biomarker
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FERMT2
DEPTOR
ENC1
PKP4

From Rooney et al. (2018) ToxSci. In press.

Office of Research and Development
National Health and Environmental Effects Research Laboratory
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SEPA Construction of biomarkers from microarray data
generated in animal tissues

Environmental Protection
Agency

Perturbation of Gene  Gene Expression ID of Biomarker Final
Expression Analysis Genes Biomarkers
A

Filtering steps

Mouse/rat tissues

Identification of: < T 5

Wild-type and TF-Null _ *  Genes consistently & ©

Generation of regulated by activators : 5 g

= statistically-filtered >— ; Y : — =
Con Cheml Chem2 Chem3 it * Genes not regulated in N
@ @ @ @ BENE HIsts the same direction in TF- 8
null animals é:

* Exclusion of genes that
lack robust changes

Decreased
Expression

From Corton (2019) Current Opinion in Toxicol 18:54



SEEA . The AR biomarker accurately replicates the ToxCast
AR pathway model

| suppression |
o 16
« The ToxCast AR pathway model uses 11 ToxCast .. 10
HT assays to identify AR actives (Kleinstreuer et ’ °e dlsEIpositives L
al., Chem Res Toxicol. 2017 Apr 17;30(4):946-964) - - .o 0.941
* |n examining the 1855 ToxCast chemicals, '_E 7 =TP for antagonists ces 0.909
most of the AR hits (87%) were anti- & 77| [ P for antagonists Tee,
20 M oo, value 0.941
and rogens T k h . egative predictive
. Set out to examine a set of antiandrd 'dK€ NOME MeSssage. value 0.909

alanced accuracy 0.925

the study to determine if the biomar] * The AR biomarker and computational
replicate the results of the AR pathw]  meathods can replicate the accuracy of the
* Prostate cancer cell line LAPC-4 cells
exposed to 28 chemicals in antagoni:
* Chemical+R1881(0.33nM) vs. '
R1881(0.33nM)
* Exposed cells for 6 hrs

* Biological replicates (cells exposed on three . Incorporating profiles from
separate days) ¥ genetic perturbations into

“false positive”
ToxCast AR pathway model steride is a known anti-

ndrogen but not identified
using the ToxCast model
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« Examined gene expression using lllumina bead = - !oiomarkers may help to
arrays increase accuracy of
« Gene expression analyzed using Partek Genomics predictions
Office of Research and Development Rooney et a|_, in review

National Health and Environmental Effects Research Laboratory



SEEA . The AR biomarker accurately replicates the ToxCast
AR pathway model

16

« The ToxCast AR pathway model uses 11 ToxCast “T.. i 10

HT assays to identify AR actives (Kleinstreuer et "] frteee,, 1
al., Chem Res Toxicol. 201 . Sensitivity 0.941
* In examining the 185 Take home.message. . Specificity 0.909
most of the AR hits ({ * The AR biomarker and computational rostive predictive [

and rogens . Negative predictive

. cetouttoeamine asetd Methods can replicate the accuracy of the . 0909

Balanced accuracy 0.925

the study to determine iff  ToxCast AR pathway model
replicate the results of thq . . o
. Prostate cancer cell line LI ¢ ShOW that gene expression biomarkers he ”fals;je p05|tll<ve”
- : . . nasteride is a known anti-
exposcc;d to 28I C:fSn;I](.:?CI)S; can accurately predict modulation of the bhdrogen but not identified
. emical+ : i . . :
R1881(0.33nM) major targets of endocrine disruptors sing the ToxCast model
* Exposed cells for 6 hrs _ _ _
* Biological replicates (cells exposed on three ) Incorporatlng prof|les from
separate days) - B e — ggnetlc perturbations into
 Examined gene expression using lllumina bead | - - !momarkers may hel]f) to
increase accuracy o
arrays e
* Gene expression analyzed using Partek Genomics predictions

Office of Research and Development

National Health and Environmental Effects Research Laboratory Rooney et al. TOXiCOlogical Sciences. In press.
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%PA High throughput toxicity testing

ToxCast and Tox21 High-Throughput Screening

ToxCast Tox21 Gene Coverage
(951 LI

[l ToxCast
u Not in

- o ToxCast

b-Em; Cel.l &I ~1,000 [g N EDhCE”. &I ~8,000 [BE =

lochemica sSSssiis Chemicals | EEEEEE=s lochemica Chemicals | SE5555555 Pathway Coverage*
assays assays
tﬁgs = :

Set Chemicals | Assays | Completion /'5::-4-- ’E%j\ *At least one gene from

TaxCast Phase | 293 ~G00 2011 A pathway represented

ToxCast Phase Il 767 ~600 2013 FoA “ﬁ:-*:-*—n—

ToxCast Phase llI 1001 ~100 Ongoing \ TO E 2 T j

E1K {endocring) 880 ~50 2013 l\’; c m&mw

om0 What are we missing?

Concentration

office of Res From Thomas, http://qsb.webcast.fi/e/echa/echa_2016_0419 workshop day2_part2/ECHA_workshop_ day2.pdf
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SERA High throughput toxicity testing

Agency

Integrating New Thinking Into a Tiered Testing Framework

/ LEZ0 L High-Throughput ' Multiple Cell Types/Lines \
Transcriptomic ‘ Concentration Response
Assay +/- Metabolic Competence

! |

Mon-Selective | Selective ‘
ACPs

Tier 1 'l'
Select In Vitro Confirmation
ToxCast/Tox21 Assays Screen

Tier 2 l :

Organotypic Assays J } Discriminate Perturbation

d Virtual Ti
and Vel HISsue from Adversity and Estimate

e Inter-Individual Variability
3 J
¥ k J
Hazard Characterization Hazard Characterization
Based on Biological Activity Based on AOP

office of Res From Thomas, http://qsb.webcast.fi/e/echa/echa_2016_0419 workshop day2_part2/ECHA_workshop_ day2.pdf

National Heall




- A flexible, portable and cost
efficient platform to
comprehensively evaluate the
potential biological pathways and
processes impacted by chemical
exposure

- High-throughput transcriptomics
(HTTr)

- |[dentify the concentration at
which biological
pathways/processes begin to be
iImpacted

- Assign putative biological targets
for chemicals

A strategic vision and operational road map for computational toxicology at
the U.S. Environmental Protection Agency [DRAFT]

(

Mo Defined Biological

High-Throughput

Multiple cell types
+/- metaboliccompetence

Target or Pathway

Defin

!

ed Biological Target
or Pathway

Tier 1 \

\
4
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Tier 2

Selectin Vitro } Orthogonal confirmation
Assays
" L J
I _ \
l 1 Tier 3
Existing AOP No AOP
In Vitro OrganotypicAssaysand Identify Likely Tissue,
Assays for other KEs Microphysiological Organ, or Organism Effect
and Systems Modeling Systems and Susceptible Populations

Estimate Point-of-Departure
Based on Pathway

anscriptional

Based on AOP
| Perturbation

Estimate Point-of-Departure

Estimate Point-of-Departure
Based on Likely Tissue- or

Organ-level Effect without AOP

R. Thomas



https://learn.genetics.utah.edu/content/science/exp

What Is Gene Expression?

With a few exceptions, C
every cell in our bodies e//*
contains copies of each of
our 20,000 or so genes.

DNA Nllc/el/s

=

\\\ Gene91 Gene92 Gene93 Gene9%4
° [OFE! ON T _IOEER

e

RNA === =

= e ® Y
Protein Y

oy

Gene products carry
out cellular functions

@ When a gene is “on” and its protein or
RNA product is being made, scientists
say that the gene is being expressed.

@ The on and off states of all of a cell’s
genes is known as a gene
expression profile.

@ Each cell type has a unique gene
expression profile.

CELL X’s
GENE EXPRESSION PROFILE:

oElle JU wuer
eSStorpL  OFF
Gene 92 Or
Gene 93 Or
Gene 94 OFF

RN

EEEEEEE NN NN NN NN

)

Gene Expression Profiling Can Help
Characterize Complex Diseases

Collect tissue samples from obese and
non-obese study participants

Non-Obese Obese

o Determine gene expression profiles

Gene Expression Gene Expression
Profiles: Profiles:
Non-Obese Obese Participants

Participants

e Identify genes that are

expressed differently in Gene 43

obese and non-cbese Gene 456

participants Gene 1765
Gene 4896
Gene 15265

Gene 43475 r
r

o Use this information to:

Develop Identify new
diagnostic tests drug targets
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Putative Targets by Gene Set Connectivity

MCF7 Pilot DEG Connectlwty‘ CMap Hits & Targets
(TempO-Seq) (CMap v2, Affymetrix)

CMap profiles

\
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Profiles for all cell types 6100
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* Rank genes according to their “correlation” with

the class of interest.

» Test if a gene set (e.g., a GO category, a

pathway, a different class signature) is enriched.

e Use Kolmogorov-Smirnoff score to measure

enrichment.

Phenotype

Subramanian et al., PNAS 2005

Gene
SetG

—

,..n--l*"' M“.
Enrichment
Score ES

-

Enrichment Score 8§

\N -

Gene List Order Index

+«—— hit (member of G)

httos://www.gsea-msiedb.org/gsea/index.isp

“+—miss (non-member of G)

Mootha et al., Nature Genetics 2004



Circadian Clock

Reproduction

Hemostasis

Developmental
Biology

Neuronal System

Network Mapping [Clomiphene Citrate]

- B :rx'—f'—‘h,,‘_ Metabolism
|
0/
Signal
> Transduchm : Metabolism
Disease

and absorption

Muscle
contraction

Chromatin
organizatiibn
. DNA Replication
DNA Repair
\' . .
\ Digestion
Transport of
small molecules

Metabolism

Gene of proteins
expression (Transcription)

Celi Cycle

Organelle biogenesis
and maintenance

Mitophagy

Vesicle-mediated
transport

Programmed
Cell Death

p-value
0
Cellular responses
to external stimuli
Extracellular
matrix organization
0.05 l
Cell-Cell
communication

» Reactome (v60) Pathway Hierarchy = Overlaid with enrichment scores based on probes with acceptable BMD model fit
* Highlights different areas of biology affected by a chemical



SEPA

United States i
Environmental Protection
Agency

Examined relationships
between 2165 microarray
comparisons in MCF-7
cells across 39 biomarkers

Includes chemicals,
various stressors,
cytokines

Two-dimensional
hierarchical complete
linkage clustering

I
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I |1

-Log(p-value)

-15

0

Behavior of biomarkers in MCF-7 cells

AT e R

HIF1, SREBP2
LXR, XBP1

*

i =)
E e B
[== i =
g =
- .77
j L
O\
Q\

ER activators: E2,
nonylphenol,
genistein, equol,
BPA

p53 activators:
nutlin-3, 5-
fluorouracil,
doxorubicin




The biomarker predicts AR actlvatum and suppression.
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The biomarker predicts AR activation and suppression

IPA is a web-based bioinformatics application that allows researchers to upload data analysis results from high-
throughput experiments such as microarray and next generation sequencing for functional analyze, integration, and
further understanding. This includes both microarray and RNA-Seq gere avnraccinn miRNA QNID matahnlamire and

Canonical Pathways

proteomics data. In general, lists of genes or chemicals can be analyze¢| =

A 4@ ([J] Edieo) x| (H
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2. Measures the match between two analyses (Analysis
Match)

o z-score = 2 (match) and < -2 (anti-match)
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SEPA Putting biomarker predictions into networks of
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