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Hazard: Dose with 
potentially adverse 

effect

Potential 
exposure

Lower Medium Higher

Risk is a function of both hazard and exposure

Figure adapted from Wambaugh et al. (2019)



Traditionally hazard data comes from dose-response 
studies in vivo, one chemical at a time

[Observe adverse effects in each dose group 
after days, weeks, months, or years of dosing]

Point of Departure 
(POD): Dose where 
adverse effects start 
to occur more than in 
control group

Depending on method, 
POD would likely be in this 
range

(this is simulated example data)



(this example happens to be from EPA’s problem formulation document for carbon 
tetrachloride – an arbitrary choice of example)

Identify specific uses 
of the chemical, in 
specific scenarios

Traditional exposure assessment: Develop a conceptual model 
that is chemical-specific and scenario-specific

Identify how the 
chemical is 
released/emitted 
during and after use; 
measure 
air/water/soil conc.

Identify how people 
come into contact with 
the released chemical

Identify which categories of people 
are exposed, and measure/compute 
their exposure
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of exposure

USE and 
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FATE & 
TRANSPORT

EXPOSURE 
(MEDIA + RECEPTOR)



• Most non-food, non-drug, non-pesticide chemicals, ranging from 
industrial waste to dyes to packing materials, are covered by the 
Toxic Substances Control Act (TSCA) and come under EPA’s 
purview

• Currently 41,953 “active” (currently-used) chemicals on TSCA 
inventory, and hundreds of new ones listed every year

Need some way to rapidly prioritize these chemicals 
according to potential risk, 

to decide where to invest resources for 
“deeper dives”

Schmidt, C. W. (2016)

But EPA has thousands of chemicals to consider, with hundreds 
of new ones added yearly: the traditional chemical-specific 
approach doesn’t scale!



HT NAM potential hazard 
estimate

HT NAM potential exposure 
estimate

Lower
Priority

Medium
Priority

Higher Priority

Potential hazard and exposure, and potential risk, can be estimated 
rapidly for large numbers of chemicals using high-throughput (HT) New 
Approach Methodologies (NAMs) for hazard and exposure.

[NRC 2007; Bell et al. 2018; Bessems et al. 2014]
Figure adapted from Wambaugh et al. (2019)



Potential chemical hazard can be rapidly screened using 
in vitro high-throughput screening (HTS) assays, e.g. 
ToxCast/Tox21

Concentration
Re

sp
on

se

Thousands of chemicals are screened in 
concentration-response across hundreds of in 
vitro assays for various kinds of bioactivity 
(binding, signaling, viability…)

Data: For each chemical, in vitro concentrations 
associated with bioactivity in each assay, if any

[Schmidt 2009; Dix et al. 2007; Kavlock et al. 2018]



Potential external exposures can be predicted using 
computational methods, e.g. the SEEM Framework (Systematic 
Empirical Evaluation of Models)

We use Bayesian methods to 
incorporate multiple HT 
exposure models with 
exposure biomonitoring data 
to make consensus exposure 
predictions for data-poor 
chemicals 
(Wambaugh et al., 2013, 2014;
Ring et al., 2018)

Available as R package: 
https://github.com/HumanExpos
ure/SEEM3RPackage
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Slide adapted from John Wambaugh

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FHumanExposure%2FSEEM3RPackage&data=04%7C01%7CRing.Caroline%40epa.gov%7Cad447aa768874f6cb26208d93b01cd90%7C88b378b367484867acf976aacbeca6a7%7C0%7C0%7C637605701194323063%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=%2BS4BK8EmvyIYRQzm20XezehBolmsTzmGC18NIhlyTqQ%3D&reserved=0


In vitro HTS bioactive 
concentration (uM)

HT exposure prediction 
(mg/kg/day)

Lower
Priority

Medium
Priority

Higher Priority

HT NAMs let us rapidly predict hazard and exposure for many chemicals 
– but how can we compare a hazard in terms of in vitro concentration 
to an exposure in terms of external dose?

Figure adapted from Wambaugh et al. (2019)



In vitro HTS bioactive concentration can be compared to 
predicted external exposures with in vitro-in vivo extrapolation 
(IVIVE) – using reverse toxicokinetics! 

Administered 
equivalent dose

(in vivo)

In vitro
bioactive 

concentration
TK model

Assume equivalent to bioactive internal 
dose in vivo 

Predicted 
External 
Exposure

Compare

[Tan et al. 2007;
Rotroff et al. 2010; 
Wetmore et al. 2012, 2013, 2015]



High-throughput chemical prioritization requires 
high-throughput TK (HTTK)
Goal: A TK model that allows reverse TK to be performed rapidly, for large numbers of 
chemicals.
Characteristics of HTTK modeling needed to achieve that goal:
• A generic PBTK model

• assumes the same ADME processes can apply to all chemicals
• A PBTK model with minimal chemical-specific TK parameters

• Minimize the number of parameters that take different values for different chemicals
• A PBTK model whose chemical-specific TK parameters can be measured in vitro, rather 

than having to be measured in vivo
• Look for existing in vitro experimental methods to measure TK parameters – pharmaceutical 

industry has been working on this for years
• A PBTK model that is not too computationally intensive

• feasible to solve for hundreds or thousands of chemicals, even when doing reverse TK
• A PBTK model that allows quantification of uncertainty & variability in its predictions



High-throughput TK (HTTK)

Generic physiologically-based TK (PBTK) 
model

.
.

.
.
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.

.
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In vitro measurements of the minimal chemical-
specific TK model parameters (hepatic clearance 
rate & plasma protein binding)+

Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017a)

Ring et al. (2017)
Linakis et al. (2020)

Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Rapid Equilibrium Dialysis (RED) 
Waters et al. (2008)

Assume clearance 
via hepatic 
metabolism (of 
chemical not bound 
to plasma proteins) 
& passive renal 
filtration



HTTK models, data, & algorithms are freely available in R package httk

R package httk
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (HTTK)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific TK data for 987 chemicals
• Described in Pearce et al. (2017a)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk


For screening purposes, we are usually interested in long-term, 
low-level exposures, so we focus on the steady-state plasma 
concentration (Css) after long-term repeated dosing
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1 mg/kg/day for 20 days

Using a summary metric of internal dose 
simplifies the computational load. 
We no longer need to store and analyze the 
full concentration vs. time trace for each 
chemical.
Instead we need to store only one number 
for each chemical: TK model-predicted Css.



We use relatively simple TK models where Css has a linear 
relationship with dose
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Prediction (line)

Slope = Css for 1 mg/kg/day

Can solve analytically for Css for 1 
mg/kg/day



Wetmore et al. (2012)

Linear relationship makes reverse TK quick & easy
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• Calculate slope (Css for dose = 1 mg/kg/day)
• Graphically: 

• start with the “target” concentration on the y-
axis (in vitro bioactive concentration 𝐶𝐶𝑠𝑠𝑠𝑠, target)

• go over to the Css-dose line
• drop down to the x-axis
• then read off the “administered equivalent dose” 

(AED) on the x-axis.

• Mathematically: AED = Css, target
slope

C
ss

(µ
M

)
Daily Dose (mg/kg/day)0

Slope = Css for 1 mg/kg/day

𝐶𝐶𝑠𝑠𝑠𝑠, target

AED



Q: What determines the slope of the line? 
A: The TK model parameters.

Chemical-specific parameters

Intrinsic hepatic clearance rate Measured in HT in vitro assays (Rotroff et al. 2010; 
Wetmore et al. 2012, 2014, 2015; Wambaugh et al. 2019)Fraction unbound to plasma protein

Tissue:blood partition coefficients Predict from phys-chem properties and tissue 
properties (Pearce et al., 2017b)

Physiological parameters

Tissue masses (including body weight)

Gathered from data available in the published 
literature [Wambaugh et al. 2015; Pearce et al. 2017a]

Tissue blood flows

Glomerular filtration rate 
(passive renal clearance)

Hepatocellularity



TK model parameters represent biology —
so they have population variability

Chemical-specific parameters

Intrinsic hepatic clearance rate Represent chemical-body interactions — vary with 
individual genetics, environmental factors, age, etc.Fraction unbound to plasma protein

Tissue:blood partition coefficients (for compartmental 
models)

Physiological parameters

Tissue masses (including body weight)

Represent physiology — vary with individual genetics, 
environmental factors, age, etc.

Tissue blood flows

Glomerular filtration rate 
(passive renal clearance)

Hepatocellularity



Dose with 
potentially 

adverse effect

Potential 
exposure

That means the slope of the line varies across the 
population — so a single in vitro concentration 
corresponds to a distribution of external doses.
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More Sensitive
(conc = lower dose)
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(conc = higher dose)

Median Sensitivity

Figure adapted from 
Wambaugh et al. (2019)



Population variability in IVIVE can be quantified using a 
Monte Carlo approach

Cs
s(

µM
)

Dose Rate (mg/kg/day)

Dose with 
potentially 

adverse effect

Potential 
exposure

Draw samples from 
population distribution of TK 
model parameters

Calculate Css-dose slope (TK 
model-predicted Css for dose 
= 1 mg/kg/day) for each 
sampled set of TK model 
parameters
Get resulting distribution of 
equivalent doses

Compare equivalent dose 
distribution to potential 
exposure distribution to 
calculate potential risk

VliverGFR

Fup
Clint

(+ other params) Figure adapted from 
Wambaugh et al. (2019)



Sample from estimated population distribution of physiological 
TK parameters using a correlated Monte Carlo approach 
(HTTK-Pop)

Predict physiological TK 
quantities (as used by 
generic TK model) for 
each individual:

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES-measured 
quantities for actual 
individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine
Hematocrit

Regression equations from 
literature (McNally et al., 2014)
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB 

[Bosgra et al. 2012], etc.)

Ring et al. (2017)

Based on physiology data measured as part of the US CDC National Health and Nutrition Examination Survey 
(NHANES) — publicly available on the web at https://www.cdc.gov/nchs/nhanes/index.htm

https://www.cdc.gov/nchs/nhanes/index.htm


HTTK-Pop can generate simulated populations 
with user-specified demographics if desired

User can specify… Example Default if not specified

Age limits in years Ages 6-11 years All NHANES (0-79 years)
Age limits in months Ages 0-36 months All NHANES (0-79 years)
# of males and females 1000 males, 0 females Randomly selected from 

NHANES respondents
BMI category BMI > 25 (overweight & 

obese)
Randomly selected from 
NHANES respondents

HTTK-Pop produces samples of physiological TK model parameters 
based on NHANES respondents in the specified demographic groups



Also: chemical-specific parameters measured in vitro
carry measurement uncertainty

.
.

.
.

..
.

.
. .1 2

CLint: Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Fup: Rapid Equilibrium 
Dialysis (RED) 
Waters et al. (2008)

Result: A distribution of possible values 
for the chemical-specific parameter



Chemical-specific TK parameters: Two-stage Monte Carlo approach to 
modeling both measurement uncertainty and population variability

24

Step 1: Draw 1 sample from 
uncertainty distribution and 
treat as “population average” 
value

Wambaugh et al. (2019)



Chemical-specific TK parameters: Two-stage Monte Carlo approach to 
modeling both measurement uncertainty and population variability

Step 2: Assume population 
variability (30% CV) around the 
sampled  “population average” value 
from Step 1, and draw 1 sample 

25

Step 1: Draw 1 sample from 
uncertainty distribution and 
treat as “population average” 
value

Wambaugh et al. (2019)



Chemical-specific TK parameters: Two-stage Monte Carlo approach to 
modeling both measurement uncertainty and population variability

Step 2: Assume population 
variability (30% CV) around the 
sampled  “population average” value 
from Step 1, and draw 1 sample 

For CLint: Add 5% “poor 
metabolizers” (10% of 
original pop. average) 26

Step 1: Draw 1 sample from 
uncertainty distribution and 
treat as “population average” 
value

Wambaugh et al. (2019)



Chemical-specific TK parameters: Two-stage Monte Carlo approach to 
modeling both measurement uncertainty and population variability

Step 2: Assume population 
variability (30% CV) around the 
sampled  “population average” value 
from Step 1, and draw 1 sample 

Repeat Steps 1 and 2 for each simulated 
individual to get sampled values that 
include both uncertainty & variability

For CLint: Add 5% “poor 
metabolizers” (10% of 
original pop. average) 27

Step 1: Draw 1 sample from 
uncertainty distribution and 
treat as “population average” 
value

Wambaugh et al. (2019)



Putting it all together: A table of HTTK model 
parameters for each “simulated individual” in a 
“simulated population”, for a given chemical

SEQN Demographics Body 
measures

Tissue 
volumes

Blood 
flows

GFR Hepatocell
ularity

Fup Clint

Sex Age Ht Wt

67184 M 42 171 55 […] […] […] […] […] […]

52034 M 0.5 73 9 […] […] […] […] […] […]

64847 F 11 154 47 […] […] […] […] […] […]

51787 F 22 166 87 […] […] […] […] […] […]

49889 M 9 147 50 […] […] […] […] […] […]

64606 F 59 169 115 […] […] […] […] […] […] 

45549 F 50 165 80 […] […] […] […] […] […]

[…] […] […] […] […] […] […] […] […] […] […]

NB: This is fake data for 
illustration purposes



Putting it all together: Evaluate Css at 1 mg/kg/day (Css-
dose slope) for each “simulated individual”  for a given 
chemical

SEQN [Physio
logical 
TK 
param
eters]

Fup Clint

67184 […] […] […]

52034 […] […] […]

64847 […] […] […]

51787 […] […] […]

49889 […] […] […]

64606 […] […] […] 

45549 […] […] […]

[…] […] […] […]

SEQN Css at 1 
mg/kg/day

67184 10.110

52034 25.710

64847 18.040

51787 14.460

49889 18.650

64606 8.481

45549 6.886

[…] […]

NB: This is fake data for illustration 
purposes – these slopes may not really 
correspond to these individuals



SEQN [Physio
logical 
TK 
param
eters]

Fup Clint

67184 […] […] […]

52034 […] […] […]

64847 […] […] […]

51787 […] […] […]

49889 […] […] […]

64606 […] […] […] 

45549 […] […] […]

[…] […] […] […]

Result: Samples 
characterize a distribution
of Css-dose slope values

Putting it all together: Evaluate Css at 1 mg/kg/day (Css-
dose slope) for each “simulated individual”  for a given 
chemical



Steeper slopes have lower equivalent doses –
95th percentile slope = “most-sensitive” 5% of the population

Cs
s(

µM
)

Dose Rate (mg/kg/day)0

Median
Css,50 for 1 mg/kg/day

More Sensitive
Slope = Css,95 for 1 mg/kg/day

Less Sensitive
Css,5 for 1 mg/kg/day



Then, we compare the low-end equivalent dose to the 
high-end potential exposure to calculate 
“Bioactivity-Exposure Ratio” (BER).

In vitro HTS 
bioactivity  

equivalent dose 
using HTTK

Potential 
exposure from 

HT models

BER > 1
(Lower Priority) 

BER ~ 1
(Medium Priority)

BER < 1
(Higher Priority)



Example: BER-based prioritization of 84 chemicals, 
using IVIVE of ToxCast AC50s. 

Population distributions 
of equivalent dose for 
10th percentile ToxCast 
AC50 (bottom point = 
most-sensitive 5%)

Population median 
aggregate exposures 
with 95% credible 
interval, inferred from 
NHANES urinary 
biomonitoring data

Stanfield et al. (2022), accepted

Bioactivity-exposure 
ratio (BER)



How might this prioritization change for 
potentially-sensitive subpopulations? Equivalent dose might 

shift if subpopulation TK 
distribution is different 
from the overall US 
population

Exposures might shift if 
subpopulation-specific 
NHANES-inferred 
exposures were 
different from overall US 
population

BER might therefore shift —
changing prioritization?

Stanfield et al. (2022), accepted



Evaluating potentially-sensitive subpopulations
• Potential population median exposures were inferred from NHANES urine biomonitoring 

data for 10 subpopulations of interest (Wambaugh et al. 2014; Ring et al. 2017): 
o ages 6-11
o ages 12-19
o ages 66+
o men
o women
o reproductive-aged women (age 18-45)
o BMI < 30
o BMI > 30

• Used HTTK-Pop to simulate population TK variability for the same 10 subpopulations & 
calculate equivalent doses for ToxCast AC50s. 

• Computed BERs for each chemical and each subpopulation.
How much did BERs change, relative to the BER for the same chemical 

in the Total US population?



How different are subpopulation BERs vs. Total population?

Rows: Chemicals 
(listed in same 
order as for Total 
population BER 
rankings)

Sidebar colors 
indicate BER order 
of magnitude in 
Total population

Columns: Potentially-
sensitive 
subpopulations

Heatmap colors: BER 
change vs. Total population 
(order of magnitude) 
Darker blue = BER shifts up 
(lower priority)
Darker red = BER shifts 
down (higher priority)
Max shift = 10x either 
direction

Updated version of 
analysis from 
Ring et al. (2017)



For these chemicals 
& subpopulations, 
BER shifts aren’t big 
enough to 
substantially change 
chemical 
prioritization.

However, we do see 
some chemical-
specific shifts —
and some broader 
subpopulation-wide 
shifts across 
chemicals —
illustrating the 
potential of 
subpopulation-
specific prioritization.

Updated version of 
analysis from 
Ring et al. (2017)

How different are subpopulation BERs vs. Total population?



BER

Equiv. dose Exposure

Are BER shifts 
driven by shifts 
in equivalent 
dose, or shifts in 
exposure, or 
both?



• We would like to know more about the risk posed by 
thousands of chemicals in the environment – which ones 
should we start with?

• We can use in vitro high-throughput screening (HTS) 
assays when in vivo toxicology data are not available

• To extrapolate in vitro HTS data to equivalent in vivo
doses, we use high-throughput toxicokinetics (HTTK) --
generic model that can be parameterized with in vitro 
data

• HTTK methods are available through the free, open 
source R package “httk”

• Simulating population variability and measurement 
uncertainty for TK parameters allows us to examine 
potential risk for potentially sensitive sub-populations

Summary

The views expressed in this presentation 
are those of the author and do not 

necessarily reflect the views or policies 
of the U.S. EPA

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro

converted to dose 
by  HTTK

Lower
Risk

Medium 
Risk

Higher
Risk
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Active work is ongoing to update and expand 
HTTK, HTTK-Pop, and exposure models!
• HTTK-Pop is updated to include the most recent NHANES physiology 

data (2013-2018) (Breen et al [2022], submitted)
• New HT-PBTK models are being developed

• an inhalation TK model (Linakis et al., 2020; Breen et al. 2022 (submitted) –
currently available in httk package (though not yet for IVIVE/reverse TK)

• a dermal TK model (Evans et al., in prep) — not yet available in httk package, 
but watch this space

• a gestational/fetal TK model (Kapraun et al., 2018) — not yet available in httk
package, but watch this space

• HT exposure models are being updated (Stanfield et al., 2021)



More things you can do with httk
• Time-dependent TK modeling (concentration vs. time predictions for a given dose)

• One-, two-, and three-compartment models, along with PBTK models
• Get summary internal dose metrics other than steady-state concentration

• Mean concentration
• Peak concentration
• AUC

• Inter-species extrapolation
• Route-to-route extrapolation (use with caution!)
• Extrapolation across life stages
• Do you have measured chemical-specific TK parameters for chemicals that aren’t already in 
httk? Add them as new rows to httk’s built-in tables of TK model parameters, so you can run 
all httk functions for your new chemicals.

• Use in silico predictions for chemical-specific TK parameters (Sipes et al. 2017; Pradeep et al. 
2020; Mansouri et al. 2021; Dawson et al. 2021)

• Use the HTTK-Pop module separately to generate a sample of population physiology, body 
measures, demographics for use in other modeling applications (e.g. population exposure models 
[East et al., 2020]) 
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Thank you!
Questions?
Contact me at ring.caroline@epa.gov

mailto:ring.caroline@epa.gov
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